CR7CAD's picture
Update app.py
848089c verified
raw
history blame
18.5 kB
import streamlit as st
import pandas as pd
import re
import json
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
import torch
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import time
# Set page title and configuration
st.set_page_config(
page_title="Resume-Job Fit Analyzer",
page_icon="πŸ“Š",
layout="wide",
initial_sidebar_state="expanded"
)
# Download NLTK resources if needed
@st.cache_resource
def download_nltk_resources():
try:
nltk.data.find('tokenizers/punkt')
nltk.data.find('corpora/stopwords')
except LookupError:
nltk.download('punkt')
nltk.download('stopwords')
return stopwords.words('english')
stop_words = download_nltk_resources()
# Load models
@st.cache_resource
def load_models():
"""Load and cache the NLP models"""
models = {}
# Use BART for resume parsing
models['parser'] = pipeline(
"text2text-generation",
model="facebook/bart-base", # This would be the fine-tuned model in production
device=0 if torch.cuda.is_available() else -1
)
# Use Qwen for evaluation
models['evaluator'] = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
models['evaluator_tokenizer'] = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
return models
# Extract skills from text
def extract_skills(text, skill_keywords):
"""Extract skills from text based on a predefined list of skills"""
found_skills = []
text_lower = text.lower()
for skill in skill_keywords:
# Create a regular expression pattern for whole word matching
pattern = r'\b' + re.escape(skill.lower()) + r'\b'
if re.search(pattern, text_lower):
found_skills.append(skill)
return list(set(found_skills))
# Parse resume
def parse_resume(resume_text, models):
"""Extract structured information from resume text"""
# In production, this would use the fine-tuned BART model
# For now, we'll implement a simple rule-based parser
# Clean the text
clean_text = re.sub(r'\s+', ' ', resume_text).strip()
# Extract common skill keywords (this would be a more extensive list in production)
tech_skills = [
"Python", "Java", "C++", "JavaScript", "TypeScript", "Go", "Rust", "SQL",
"React", "Angular", "Vue", "Node.js", "Django", "Flask", "Spring",
"TensorFlow", "PyTorch", "Scikit-learn", "Machine Learning", "Deep Learning", "NLP",
"AWS", "Azure", "GCP", "Docker", "Kubernetes", "CI/CD", "Jenkins", "GitHub Actions",
"REST API", "GraphQL", "Microservices", "Serverless"
]
soft_skills = [
"Leadership", "Communication", "Teamwork", "Problem-solving", "Critical thinking",
"Time management", "Adaptability", "Creativity", "Collaboration", "Presentation"
]
# Extract skills
found_tech_skills = extract_skills(clean_text, tech_skills)
found_soft_skills = extract_skills(clean_text, soft_skills)
# Extract experience using regex patterns (simplified)
experience_pattern = r'(?:Experience|EXPERIENCE|Work Experience|WORK EXPERIENCE).*?(?:Education|EDUCATION|Skills|SKILLS|$)'
experience_match = re.search(experience_pattern, clean_text, re.DOTALL)
experience_text = experience_match.group(0) if experience_match else ""
# Extract education using regex patterns (simplified)
education_pattern = r'(?:Education|EDUCATION).*?(?:Skills|SKILLS|Experience|EXPERIENCE|$)'
education_match = re.search(education_pattern, clean_text, re.DOTALL)
education_text = education_match.group(0) if education_match else ""
# Estimate years of experience (simplified)
years_exp = 0
year_patterns = [
r'(\d{4})\s*-\s*(?:present|current|now|2023|2024|2025)',
r'(\d{4})\s*-\s*(\d{4})'
]
for pattern in year_patterns:
matches = re.findall(pattern, clean_text, re.IGNORECASE)
for match in matches:
if isinstance(match, tuple):
start_year = int(match[0])
end_year = int(match[1]) if match[1].isdigit() else 2025
years_exp += (end_year - start_year)
else:
start_year = int(match)
years_exp += (2025 - start_year)
# Cap reasonable years
years_exp = min(years_exp, 30)
# Create structured data
structured_data = {
"skills": {
"technical": found_tech_skills,
"soft": found_soft_skills
},
"experience": {
"years": years_exp,
"summary": experience_text[:300] + "..." if len(experience_text) > 300 else experience_text
},
"education": education_text[:300] + "..." if len(education_text) > 300 else education_text
}
return structured_data
# Parse job description
def parse_job_description(job_text):
"""Extract key requirements from job description"""
# Clean the text
clean_text = re.sub(r'\s+', ' ', job_text).strip()
# Extract common skill keywords (same as resume parser)
tech_skills = [
"Python", "Java", "C++", "JavaScript", "TypeScript", "Go", "Rust", "SQL",
"React", "Angular", "Vue", "Node.js", "Django", "Flask", "Spring",
"TensorFlow", "PyTorch", "Scikit-learn", "Machine Learning", "Deep Learning", "NLP",
"AWS", "Azure", "GCP", "Docker", "Kubernetes", "CI/CD", "Jenkins", "GitHub Actions",
"REST API", "GraphQL", "Microservices", "Serverless"
]
soft_skills = [
"Leadership", "Communication", "Teamwork", "Problem-solving", "Critical thinking",
"Time management", "Adaptability", "Creativity", "Collaboration", "Presentation"
]
# Extract skills
required_tech_skills = extract_skills(clean_text, tech_skills)
required_soft_skills = extract_skills(clean_text, soft_skills)
# Extract years of experience requirement (simplified)
exp_patterns = [
r'(\d+)\+?\s*(?:years|yrs|yr)(?:\s*of)?\s*(?:experience|exp)',
r'(?:experience|exp)(?:\s*of)?\s*(\d+)\+?\s*(?:years|yrs|yr)'
]
required_years = 0
for pattern in exp_patterns:
matches = re.findall(pattern, clean_text, re.IGNORECASE)
if matches:
# Take the highest mentioned years
required_years = max([int(y) for y in matches if y.isdigit()] + [required_years])
# Extract job title
title_pattern = r'^(.*?)(?:\n|$)'
title_match = re.search(title_pattern, clean_text)
job_title = title_match.group(1).strip() if title_match else "Not specified"
# Create structured data
structured_data = {
"title": job_title,
"requirements": {
"technical_skills": required_tech_skills,
"soft_skills": required_soft_skills,
"years_experience": required_years
},
"full_text": job_text
}
return structured_data
# Calculate match score
def calculate_match_score(resume_data, job_data):
"""Calculate how well the resume matches the job description"""
scores = {}
# Calculate skill match percentage
required_tech_skills = set(job_data["requirements"]["technical_skills"])
candidate_tech_skills = set(resume_data["skills"]["technical"])
required_soft_skills = set(job_data["requirements"]["soft_skills"])
candidate_soft_skills = set(resume_data["skills"]["soft"])
if required_tech_skills:
tech_match = len(candidate_tech_skills.intersection(required_tech_skills)) / len(required_tech_skills)
scores["technical_skills"] = {
"score": int(tech_match * 100),
"matched": list(candidate_tech_skills.intersection(required_tech_skills)),
"missing": list(required_tech_skills - candidate_tech_skills)
}
else:
scores["technical_skills"] = {"score": 0, "matched": [], "missing": []}
if required_soft_skills:
soft_match = len(candidate_soft_skills.intersection(required_soft_skills)) / len(required_soft_skills)
scores["soft_skills"] = {
"score": int(soft_match * 100),
"matched": list(candidate_soft_skills.intersection(required_soft_skills)),
"missing": list(required_soft_skills - candidate_soft_skills)
}
else:
scores["soft_skills"] = {"score": 0, "matched": [], "missing": []}
# Experience match
required_years = job_data["requirements"]["years_experience"]
candidate_years = resume_data["experience"]["years"]
if required_years > 0:
if candidate_years >= required_years:
exp_score = 100
else:
exp_score = int((candidate_years / required_years) * 100)
scores["experience"] = {
"score": exp_score,
"candidate_years": candidate_years,
"required_years": required_years
}
else:
scores["experience"] = {
"score": 100 if candidate_years > 0 else 50,
"candidate_years": candidate_years,
"required_years": "Not specified"
}
# Calculate overall score (weighted)
tech_weight = 0.6
soft_weight = 0.2
exp_weight = 0.2
overall_score = (
scores["technical_skills"]["score"] * tech_weight +
scores["soft_skills"]["score"] * soft_weight +
scores["experience"]["score"] * exp_weight
)
scores["overall"] = int(overall_score)
return scores
# Generate expert assessment using Qwen
def generate_assessment(resume_data, job_data, match_scores, models):
"""Generate an expert assessment using Qwen model"""
# Prepare context
job_title = job_data["title"]
matched_skills = match_scores["technical_skills"]["matched"]
missing_skills = match_scores["technical_skills"]["missing"]
experience_match = match_scores["experience"]
overall_score = match_scores["overall"]
# Determine fit classification
fit_status = "FIT" if overall_score >= 70 else "NOT FIT"
# Create prompt for Qwen
prompt = f"""
<|im_start|>system
You are an expert resume evaluator. Analyze how well a candidate fits a job posting and provide professional feedback.
<|im_end|>
<|im_start|>user
Evaluate this candidate for a {job_title} position.
Overall match score: {overall_score}%
Technical skills match: {match_scores["technical_skills"]["score"]}%
Soft skills match: {match_scores["soft_skills"]["score"]}%
Experience match: {experience_match["score"]}%
Candidate has: {experience_match["candidate_years"]} years of experience
Position requires: {experience_match["required_years"]} years of experience
Matched technical skills: {", ".join(matched_skills) if matched_skills else "None"}
Missing technical skills: {", ".join(missing_skills) if missing_skills else "None"}
Create a professional assessment of this candidate. First state whether they are a FIT or NOT FIT for the position, then explain why with specific strengths and development areas.
<|im_end|>
<|im_start|>assistant
"""
try:
# Generate the assessment using Qwen
tokenizer = models['evaluator_tokenizer']
qwen_model = models['evaluator']
inputs = tokenizer(prompt, return_tensors="pt")
outputs = qwen_model.generate(
inputs.input_ids,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.9
)
assessment = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract the assistant's response
if "<|im_start|>assistant" in assessment:
assessment = assessment.split("<|im_start|>assistant")[-1]
# Clean up any remaining markers
assessment = re.sub(r'<\|im_(start|end)\|>', '', assessment)
assessment = assessment.strip()
# If no assessment was generated, create a fallback
if not assessment or len(assessment) < 50:
assessment = generate_fallback_assessment(resume_data, job_data, match_scores, fit_status)
except Exception as e:
st.error(f"Error generating assessment: {str(e)}")
assessment = generate_fallback_assessment(resume_data, job_data, match_scores, fit_status)
return assessment, fit_status
# Generate fallback assessment
def generate_fallback_assessment(resume_data, job_data, match_scores, fit_status):
"""Generate a fallback assessment if the model fails"""
job_title = job_data["title"]
matched_skills = match_scores["technical_skills"]["matched"]
missing_skills = match_scores["technical_skills"]["missing"]
overall_score = match_scores["overall"]
if fit_status == "FIT":
assessment = f"""FIT: This candidate demonstrates a strong alignment with the {job_title} position, achieving an overall match score of {overall_score}%. Their proficiency in {', '.join(matched_skills) if matched_skills else 'relevant skills'} positions them well to contribute effectively from the start. The candidate's experience level is suitable for the role's requirements. To maximize their success, they could consider developing expertise in {', '.join(missing_skills) if missing_skills else 'additional specialized areas relevant to this role'}.
"""
else:
assessment = f"""NOT FIT: This candidate currently shows limited alignment with the {job_title} position, with an overall match score of {overall_score}%. While they demonstrate some relevant capabilities in {', '.join(matched_skills) if matched_skills else 'a few areas'}, they would need to develop expertise in critical areas such as {', '.join(missing_skills) if missing_skills else 'key technical requirements for this position'}. The candidate may become more competitive for this role by focusing on these skill gaps and gaining more relevant experience.
"""
return assessment
# Create the main header and interface
st.title("Resume-Job Fit Analyzer")
st.markdown("### Evaluate how well a resume matches a job description")
# Setup columns for input
col1, col2 = st.columns(2)
with col1:
# Resume input
st.subheader("Resume")
resume_text = st.text_area("Paste resume text here", height=300,
placeholder="Paste the candidate's resume text here...")
with col2:
# Job description input
st.subheader("Job Description")
job_description = st.text_area("Paste job description here", height=300,
placeholder="Paste the job description here...")
# Analysis button
analyze_button = st.button("Analyze Match", type="primary", use_container_width=True)
# Main analysis logic
if analyze_button:
if not resume_text or not job_description:
st.error("Please provide both a resume and a job description.")
else:
with st.spinner("Analyzing resume and job match..."):
# Record start time
start_time = time.time()
# Load models (uses caching so only loads once)
models = load_models()
# Parse resume and job description
resume_data = parse_resume(resume_text, models)
job_data = parse_job_description(job_description)
# Calculate match score
match_scores = calculate_match_score(resume_data, job_data)
# Generate assessment
assessment, fit_status = generate_assessment(resume_data, job_data, match_scores, models)
# Calculate execution time
execution_time = time.time() - start_time
# Display results
st.success(f"Analysis complete in {execution_time:.2f} seconds")
# Display fit status prominently
st.markdown(f"## Overall Result: {fit_status}")
# Display match score
st.subheader("Match Score")
score_col1, score_col2, score_col3 = st.columns(3)
with score_col1:
st.metric("Overall Match", f"{match_scores['overall']}%")
with score_col2:
st.metric("Technical Skills", f"{match_scores['technical_skills']['score']}%")
with score_col3:
st.metric("Experience Match", f"{match_scores['experience']['score']}%")
# Show skills breakdown
st.subheader("Skills Breakdown")
skill_col1, skill_col2 = st.columns(2)
with skill_col1:
st.markdown("##### Matched Skills")
if match_scores["technical_skills"]["matched"]:
for skill in match_scores["technical_skills"]["matched"]:
st.markdown(f"βœ… {skill}")
else:
st.markdown("No matched skills found")
with skill_col2:
st.markdown("##### Missing Skills")
if match_scores["technical_skills"]["missing"]:
for skill in match_scores["technical_skills"]["missing"]:
st.markdown(f"❌ {skill}")
else:
st.markdown("No missing skills detected")
# Show experience comparison
st.subheader("Experience")
exp_col1, exp_col2 = st.columns(2)
with exp_col1:
st.markdown(f"**Required**: {job_data['requirements']['years_experience']} years")
with exp_col2:
st.markdown(f"**Candidate has**: {resume_data['experience']['years']} years")
# Display detailed assessment
st.subheader("Expert Assessment")
st.markdown(assessment)
# Show parsed data (expandable)
with st.expander("View Parsed Data"):
col1, col2 = st.columns(2)
with col1:
st.subheader("Resume Data")
st.json(resume_data)
with col2:
st.subheader("Job Requirements")
st.json(job_data)