CR7CAD's picture
Update app.py
b0dca97 verified
raw
history blame
10.6 kB
import os
import tempfile
import streamlit as st
import docx
import textract
from transformers import pipeline
import threading
import numpy as np
#####################################
# Load Models - Optimized with Threading
#####################################
@st.cache_resource(show_spinner=False)
def load_models():
"""
Load all models in parallel using threading to speed up initialization
"""
models = {}
def load_summarizer_thread():
models['summarizer'] = pipeline("summarization", model="google/pegasus-xsum", device=0 if st.session_state.get('use_gpu', False) else -1)
def load_similarity_thread():
# Using sentence-similarity pipeline instead of SentenceTransformer
models['similarity'] = pipeline("sentence-similarity", model="sentence-transformers/all-MiniLM-L6-v2",
device=0 if st.session_state.get('use_gpu', False) else -1)
# Start threads to load models in parallel
threads = [
threading.Thread(target=load_summarizer_thread),
threading.Thread(target=load_similarity_thread)
]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
return models
#####################################
# Function: Extract Text from File - Optimized
#####################################
def extract_text_from_file(file_obj):
"""
Extract text from .doc and .docx files.
Returns the extracted text or an error message if extraction fails.
"""
filename = file_obj.name
ext = os.path.splitext(filename)[1].lower()
text = ""
if ext == ".docx":
try:
document = docx.Document(file_obj)
# Use a list comprehension and join for better performance
text = "\n".join(para.text for para in document.paragraphs if para.text.strip())
except Exception as e:
text = f"Error processing DOCX file: {e}"
elif ext == ".doc":
try:
# Use a context manager for better file handling
with tempfile.NamedTemporaryFile(delete=False, suffix=".doc") as tmp:
tmp.write(file_obj.read())
tmp_filename = tmp.name
text = textract.process(tmp_filename).decode("utf-8")
# Clean up the temporary file immediately
os.unlink(tmp_filename)
except Exception as e:
text = f"Error processing DOC file: {e}"
else:
text = "Unsupported file type."
return text
#####################################
# Function: Summarize Resume Text - Optimized
#####################################
def summarize_resume_text(resume_text, models):
"""
Generates a concise summary of the resume text using the pre-loaded summarization model.
"""
summarizer = models['summarizer']
# Optimize text processing - only use essential text
# Break text into chunks and summarize important parts
max_input_length = 1024 # PEGASUS-XSUM limit
if len(resume_text) > max_input_length:
# Instead of simple trimming, extract key sections
chunks = [resume_text[i:i+max_input_length] for i in range(0, min(len(resume_text), 3*max_input_length), max_input_length)]
summaries = []
for chunk in chunks:
chunk_summary = summarizer(chunk, max_length=100, min_length=30, do_sample=False)[0]['summary_text']
summaries.append(chunk_summary)
candidate_summary = " ".join(summaries)
# Summarize again if combined summary is too long
if len(candidate_summary) > max_input_length:
candidate_summary = summarizer(candidate_summary[:max_input_length], max_length=150, min_length=40, do_sample=False)[0]['summary_text']
else:
candidate_summary = summarizer(resume_text, max_length=150, min_length=40, do_sample=False)[0]['summary_text']
return candidate_summary
#####################################
# Function: Compare Candidate Summary to Company Prompt - Using Pipeline
#####################################
def compute_suitability(candidate_summary, company_prompt, models):
"""
Compute the similarity between candidate summary and company prompt using the similarity pipeline.
Returns a score in the range [0, 1].
"""
similarity_pipeline = models['similarity']
# The pipeline expects a document and a list of candidates to compare to
result = similarity_pipeline(
candidate_summary,
[company_prompt]
)
# Extract the similarity score from the result
score = result[0]['score']
return score
#####################################
# Main Resume Processing Logic
#####################################
def process_resume(file_obj, models):
"""
Extracts text from the uploaded file and then generates a summary
using a text summarization model.
"""
with st.status("Processing resume...") as status:
status.update(label="Extracting text from resume...")
resume_text = extract_text_from_file(file_obj)
# Check if resume_text is valid
if not resume_text or resume_text.strip() == "":
status.update(label="Error: No text could be extracted", state="error")
return ""
status.update(label=f"Extracted {len(resume_text)} characters. Generating summary...")
candidate_summary = summarize_resume_text(resume_text, models)
status.update(label="Processing complete!", state="complete")
return candidate_summary
#####################################
# Streamlit Interface - Optimized
#####################################
def main():
st.set_page_config(page_title="Resume Analyzer", layout="wide")
# Initialize session state for GPU usage
if 'use_gpu' not in st.session_state:
st.session_state.use_gpu = False
# Only show sidebar settings on first run
with st.sidebar:
st.title("Settings")
if st.checkbox("Use GPU (if available)", value=st.session_state.use_gpu):
st.session_state.use_gpu = True
else:
st.session_state.use_gpu = False
st.info("Using GPU can significantly speed up model inference if available")
# Load models - this happens only once due to caching
with st.spinner("Loading AI models..."):
models = load_models()
st.title("Resume Analyzer and Company Suitability Checker")
st.markdown(
"""
Upload your resume file in **.doc** or **.docx** format. The app performs the following tasks:
1. Extracts text from the resume.
2. Uses a transformer-based model to generate a concise candidate summary.
3. Compares the candidate summary with a company profile to produce a suitability score.
"""
)
# Use columns for better layout
col1, col2 = st.columns([1, 1])
with col1:
# File uploader for resume
uploaded_file = st.file_uploader("Upload Resume", type=["doc", "docx"])
# Button to process the resume
if st.button("Process Resume", type="primary", use_container_width=True):
if uploaded_file is None:
st.error("Please upload a resume file first.")
else:
candidate_summary = process_resume(uploaded_file, models)
if candidate_summary: # only if summary is generated
st.session_state["candidate_summary"] = candidate_summary
# Display candidate summary if available
if "candidate_summary" in st.session_state:
st.subheader("Candidate Summary")
st.markdown(st.session_state["candidate_summary"])
with col2:
# Pre-defined company prompt for Google LLC.
default_company_prompt = (
"Google LLC, a global leader in technology and innovation, specializes in internet services, cloud computing, "
"artificial intelligence, and software development. As part of Alphabet Inc., Google seeks candidates with strong "
"problem-solving skills, adaptability, and collaboration abilities. Technical roles require proficiency in programming "
"languages such as Python, Java, C++, Go, or JavaScript, with expertise in data structures, algorithms, and system design. "
"Additionally, skills in AI, cybersecurity, UX/UI design, and digital marketing are highly valued. Google fosters a culture "
"of innovation, expecting candidates to demonstrate creativity, analytical thinking, and a passion for cutting-edge technology."
)
# Company prompt text area.
company_prompt = st.text_area(
"Enter company details:",
value=default_company_prompt,
height=150,
)
# Button to compute the suitability score.
if st.button("Compute Suitability Score", type="primary", use_container_width=True):
if "candidate_summary" not in st.session_state:
st.error("Please process the resume first!")
else:
candidate_summary = st.session_state["candidate_summary"]
if candidate_summary.strip() == "":
st.error("Candidate summary is empty; please check your resume file.")
elif company_prompt.strip() == "":
st.error("Please enter the company information.")
else:
with st.spinner("Computing suitability score..."):
score = compute_suitability(candidate_summary, company_prompt, models)
# Display score with a progress bar for visual feedback
st.success(f"Suitability Score: {score:.2f} (range 0 to 1)")
st.progress(score)
# Add interpretation of score
if score > 0.75:
st.info("Excellent match! Your profile appears very well suited for this company.")
elif score > 0.5:
st.info("Good match. Your profile aligns with many aspects of the company's requirements.")
elif score > 0.3:
st.info("Moderate match. Consider highlighting more relevant skills or experience.")
else:
st.info("Low match. Your profile may need significant adjustments to better align with this company.")
if __name__ == "__main__":
main()