Spaces:
Sleeping
Sleeping
File size: 10,621 Bytes
cf8a522 92f45fe 8e1d297 92f45fe cc18787 c6d228e b0dca97 8e1d297 c6d228e b0dca97 c6d228e b0dca97 c6d228e 8e1d297 92f45fe 7716c5c 92f45fe 7716c5c 9753cc9 92f45fe c6d228e 9753cc9 92f45fe c6d228e 92f45fe c6d228e 92f45fe 8e1d297 c6d228e 7716c5c c6d228e d836318 c6d228e d836318 c6d228e 0d4f4dd c6d228e cc18787 c6d228e 0d4f4dd cc18787 d836318 cccaa8e b0dca97 cccaa8e c6d228e cccaa8e b0dca97 cccaa8e b0dca97 c6d228e b0dca97 c6d228e b0dca97 cccaa8e 7716c5c 8e1d297 c6d228e cc18787 c6d228e 0d4f4dd cc18787 cccaa8e c6d228e 8e1d297 c6d228e 3661e7e c6d228e 8e1d297 c6d228e 0d4f4dd c6d228e 3661e7e c6d228e 3661e7e c6d228e 3661e7e c6d228e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import os
import tempfile
import streamlit as st
import docx
import textract
from transformers import pipeline
import threading
import numpy as np
#####################################
# Load Models - Optimized with Threading
#####################################
@st.cache_resource(show_spinner=False)
def load_models():
"""
Load all models in parallel using threading to speed up initialization
"""
models = {}
def load_summarizer_thread():
models['summarizer'] = pipeline("summarization", model="google/pegasus-xsum", device=0 if st.session_state.get('use_gpu', False) else -1)
def load_similarity_thread():
# Using sentence-similarity pipeline instead of SentenceTransformer
models['similarity'] = pipeline("sentence-similarity", model="sentence-transformers/all-MiniLM-L6-v2",
device=0 if st.session_state.get('use_gpu', False) else -1)
# Start threads to load models in parallel
threads = [
threading.Thread(target=load_summarizer_thread),
threading.Thread(target=load_similarity_thread)
]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
return models
#####################################
# Function: Extract Text from File - Optimized
#####################################
def extract_text_from_file(file_obj):
"""
Extract text from .doc and .docx files.
Returns the extracted text or an error message if extraction fails.
"""
filename = file_obj.name
ext = os.path.splitext(filename)[1].lower()
text = ""
if ext == ".docx":
try:
document = docx.Document(file_obj)
# Use a list comprehension and join for better performance
text = "\n".join(para.text for para in document.paragraphs if para.text.strip())
except Exception as e:
text = f"Error processing DOCX file: {e}"
elif ext == ".doc":
try:
# Use a context manager for better file handling
with tempfile.NamedTemporaryFile(delete=False, suffix=".doc") as tmp:
tmp.write(file_obj.read())
tmp_filename = tmp.name
text = textract.process(tmp_filename).decode("utf-8")
# Clean up the temporary file immediately
os.unlink(tmp_filename)
except Exception as e:
text = f"Error processing DOC file: {e}"
else:
text = "Unsupported file type."
return text
#####################################
# Function: Summarize Resume Text - Optimized
#####################################
def summarize_resume_text(resume_text, models):
"""
Generates a concise summary of the resume text using the pre-loaded summarization model.
"""
summarizer = models['summarizer']
# Optimize text processing - only use essential text
# Break text into chunks and summarize important parts
max_input_length = 1024 # PEGASUS-XSUM limit
if len(resume_text) > max_input_length:
# Instead of simple trimming, extract key sections
chunks = [resume_text[i:i+max_input_length] for i in range(0, min(len(resume_text), 3*max_input_length), max_input_length)]
summaries = []
for chunk in chunks:
chunk_summary = summarizer(chunk, max_length=100, min_length=30, do_sample=False)[0]['summary_text']
summaries.append(chunk_summary)
candidate_summary = " ".join(summaries)
# Summarize again if combined summary is too long
if len(candidate_summary) > max_input_length:
candidate_summary = summarizer(candidate_summary[:max_input_length], max_length=150, min_length=40, do_sample=False)[0]['summary_text']
else:
candidate_summary = summarizer(resume_text, max_length=150, min_length=40, do_sample=False)[0]['summary_text']
return candidate_summary
#####################################
# Function: Compare Candidate Summary to Company Prompt - Using Pipeline
#####################################
def compute_suitability(candidate_summary, company_prompt, models):
"""
Compute the similarity between candidate summary and company prompt using the similarity pipeline.
Returns a score in the range [0, 1].
"""
similarity_pipeline = models['similarity']
# The pipeline expects a document and a list of candidates to compare to
result = similarity_pipeline(
candidate_summary,
[company_prompt]
)
# Extract the similarity score from the result
score = result[0]['score']
return score
#####################################
# Main Resume Processing Logic
#####################################
def process_resume(file_obj, models):
"""
Extracts text from the uploaded file and then generates a summary
using a text summarization model.
"""
with st.status("Processing resume...") as status:
status.update(label="Extracting text from resume...")
resume_text = extract_text_from_file(file_obj)
# Check if resume_text is valid
if not resume_text or resume_text.strip() == "":
status.update(label="Error: No text could be extracted", state="error")
return ""
status.update(label=f"Extracted {len(resume_text)} characters. Generating summary...")
candidate_summary = summarize_resume_text(resume_text, models)
status.update(label="Processing complete!", state="complete")
return candidate_summary
#####################################
# Streamlit Interface - Optimized
#####################################
def main():
st.set_page_config(page_title="Resume Analyzer", layout="wide")
# Initialize session state for GPU usage
if 'use_gpu' not in st.session_state:
st.session_state.use_gpu = False
# Only show sidebar settings on first run
with st.sidebar:
st.title("Settings")
if st.checkbox("Use GPU (if available)", value=st.session_state.use_gpu):
st.session_state.use_gpu = True
else:
st.session_state.use_gpu = False
st.info("Using GPU can significantly speed up model inference if available")
# Load models - this happens only once due to caching
with st.spinner("Loading AI models..."):
models = load_models()
st.title("Resume Analyzer and Company Suitability Checker")
st.markdown(
"""
Upload your resume file in **.doc** or **.docx** format. The app performs the following tasks:
1. Extracts text from the resume.
2. Uses a transformer-based model to generate a concise candidate summary.
3. Compares the candidate summary with a company profile to produce a suitability score.
"""
)
# Use columns for better layout
col1, col2 = st.columns([1, 1])
with col1:
# File uploader for resume
uploaded_file = st.file_uploader("Upload Resume", type=["doc", "docx"])
# Button to process the resume
if st.button("Process Resume", type="primary", use_container_width=True):
if uploaded_file is None:
st.error("Please upload a resume file first.")
else:
candidate_summary = process_resume(uploaded_file, models)
if candidate_summary: # only if summary is generated
st.session_state["candidate_summary"] = candidate_summary
# Display candidate summary if available
if "candidate_summary" in st.session_state:
st.subheader("Candidate Summary")
st.markdown(st.session_state["candidate_summary"])
with col2:
# Pre-defined company prompt for Google LLC.
default_company_prompt = (
"Google LLC, a global leader in technology and innovation, specializes in internet services, cloud computing, "
"artificial intelligence, and software development. As part of Alphabet Inc., Google seeks candidates with strong "
"problem-solving skills, adaptability, and collaboration abilities. Technical roles require proficiency in programming "
"languages such as Python, Java, C++, Go, or JavaScript, with expertise in data structures, algorithms, and system design. "
"Additionally, skills in AI, cybersecurity, UX/UI design, and digital marketing are highly valued. Google fosters a culture "
"of innovation, expecting candidates to demonstrate creativity, analytical thinking, and a passion for cutting-edge technology."
)
# Company prompt text area.
company_prompt = st.text_area(
"Enter company details:",
value=default_company_prompt,
height=150,
)
# Button to compute the suitability score.
if st.button("Compute Suitability Score", type="primary", use_container_width=True):
if "candidate_summary" not in st.session_state:
st.error("Please process the resume first!")
else:
candidate_summary = st.session_state["candidate_summary"]
if candidate_summary.strip() == "":
st.error("Candidate summary is empty; please check your resume file.")
elif company_prompt.strip() == "":
st.error("Please enter the company information.")
else:
with st.spinner("Computing suitability score..."):
score = compute_suitability(candidate_summary, company_prompt, models)
# Display score with a progress bar for visual feedback
st.success(f"Suitability Score: {score:.2f} (range 0 to 1)")
st.progress(score)
# Add interpretation of score
if score > 0.75:
st.info("Excellent match! Your profile appears very well suited for this company.")
elif score > 0.5:
st.info("Good match. Your profile aligns with many aspects of the company's requirements.")
elif score > 0.3:
st.info("Moderate match. Consider highlighting more relevant skills or experience.")
else:
st.info("Low match. Your profile may need significant adjustments to better align with this company.")
if __name__ == "__main__":
main() |