sssssy's picture
Update dataset.py
e96d01f
import math
import json
import torch
import librosa
import torchaudio
import os
import numpy as np
import pandas as pd
from tqdm import tqdm
from torch.utils.data import Dataset, DataLoader
import time
def move_data_to_device(data, device):
ret = []
for i in data:
if isinstance(i, torch.Tensor):
ret.append(i.to(device))
return ret
def read_content(filepath):
'''
Read the content file for characters, pinyin and tones.
return:
dict: {index: [characters, pinyin, tones]}
exp. {'SS00050001': ['你 好 ', 'ni3 hao3 ', '3 3 ']}
'''
res = {}
with open(filepath, 'r') as f:
lines = f.readlines()
for l in lines:
l = l.replace('\n', ' ').replace('\t', ' ')
tmp = l.split(' ')
if len(tmp) == 0:
break
number = tmp[0][0:len(tmp[0])-4]
s = ''
pinyin = ''
tones = ''
for i in range(1, len(tmp)):
if len(tmp[i]) == 0:
continue
if i % 2 == 0:
pinyin += tmp[i] + ' '
tones += tmp[i][-1] + ' '
else:
s += tmp[i] + ' '
res[number] = [s, pinyin, tones]
return res
def read_dataset_index(filepath='/kaggle/input/paddle-speech/AISHELL-3/train'):
'''
get all audio files' index and file paths
read content.txt to get corresponding words, pinyin, tones, duration
return dataframe:
['index', 'filepath', 'word', 'pinyin', 'tone', 'duration']
5 tones in total, 5 represents neutral tone
'''
features = read_content(os.path.join(filepath, 'content.txt'))
start_time = time.time()
count = 0
durations = {}
with open('/kaggle/input/durations/durations.txt', 'r') as f:
lines = f.readlines()
for l in lines:
tmp = (l.replace('\n', '')).split(' ')
if len(tmp) != 0:
durations[tmp[0]] = float(tmp[1])
audio_path = os.path.join(filepath, 'wav')
indexes = []
for root, dirs, files in os.walk(audio_path):
for f in files:
if f.endswith('.wav'):
count += 1
index = f[0:len(f)-4]
filepath = os.path.join(audio_path, index[0:len(index)-4], f)
word, py, tone = features[index]
du = durations[index]
indexes.append((index, filepath, word, py, tone, du))
end_time = time.time()
print('#wav file read:', count)
print('read dataset index time: ', end_time - start_time)
return pd.DataFrame.from_records(indexes, columns=['index', 'filepath', 'word', 'pinyin', 'tone', 'duration'])
def collate_fn(batch):
inp = []
f0 = []
word = []
tone = []
max_frame_num = 1600
for sample in batch:
max_frame_num = max(max_frame_num, sample[0].shape[0], sample[1].shape[0], sample[2].shape[0], sample[3].shape[0])
for sample in batch:
inp.append(
torch.nn.functional.pad(sample[0], (0, 0, 0, max_frame_num - sample[0].shape[0]), mode='constant', value=0))
f0.append(
torch.nn.functional.pad(sample[1], (0, max_frame_num - sample[1].shape[0]), mode='constant', value=0))
word.append(
torch.nn.functional.pad(sample[2], (0, 50 - sample[2].shape[0]), mode='constant', value=0))
tone.append(
torch.nn.functional.pad(sample[3], (0, 50 - sample[3].shape[0]), mode='constant', value=0))
inp = torch.stack(inp)
f0 = torch.stack(f0)
word = torch.stack(word)
tone = torch.stack(tone)
return inp, f0, word, tone
def get_data_loader(split, args):
Dataset = MyDataset(
dataset_root=args['dataset_root'],
split=split,
sampling_rate=args['sampling_rate'],
sample_length=args['sample_length'],
frame_size=args['frame_size'],
)
Dataset.dataset_index=Dataset.dataset_index[:32]
Dataset.index=Dataset.index[:32]
data_loader = DataLoader(
Dataset,
batch_size=args['batch_size'],
num_workers=args['num_workers'],
pin_memory=True,
shuffle=True, # changed into True cuz audio files recorded by same speaker are stored in the same folder
collate_fn=collate_fn,
)
return data_loader
class MyDataset(Dataset):
def __init__(self, dataset_root, split, sampling_rate, sample_length, frame_size):
self.dataset_root = dataset_root
self.split = split
self.sampling_rate = sampling_rate
self.sample_length = sample_length
self.frame_size = frame_size
self.frame_per_sec = int(1 / self.frame_size)
# self.annotations = get_annotations(get_all_file_names(os.path.join(self.dataset_root, 'AISHELL-3', split)), level='word')
self.dataset_index = read_dataset_index(os.path.join(self.dataset_root, 'AISHELL-3', split))
self.duration = {}
self.index = self.index_data()
self.pinyin = {} # read encoded pinyin
with open('/kaggle/input/pinyin-encode/pinyin.txt', 'r') as f:
lines = f.readlines()
i = 0
for l in lines:
self.pinyin[l.replace('\n', '')] = i
i += 1
def index_data(self):
'''
Prepare the index for the dataset, i.e., the audio file name and starting time of each sample
go through self.dataset_index to get duration and then calculate
'''
index = []
for indexs, row in self.dataset_index.iterrows():
duration = row['duration']
num_seg = math.ceil(duration / self.sample_length)
for i in range(num_seg):
index.append([indexs, i * self.sample_length])
self.duration[row['index']] = row['duration']
return index
def __len__(self):
return len(self.index)
def __getitem__(self, idx):
'''
int idx: index of the audio file (not exp.SSB00050001)
return mel spectrogram, FUNDAMENTAL FREQUENCY(crepe/pyin), words, tones
'''
audio_fn, start_sec = self.index[idx]
end_sec = start_sec + self.sample_length
audio_fp = self.dataset_index.loc[audio_fn,'filepath']
mel = None
#load data from file
waveform, sample_rate = torchaudio.load(audio_fp)
waveform = torchaudio.transforms.Resample(sample_rate, self.sampling_rate)(waveform)
mel_spec = torchaudio.transforms.MelSpectrogram(sample_rate=self.sampling_rate, n_fft=2048, hop_length=100, n_mels=256)(waveform)
mel_spec = torch.mean(mel_spec,0)
# print(mel_spec.shape)
# calculate fundamental frequency
f0 = None
waveform, sr = librosa.load(audio_fp, sr=self.sampling_rate)
f0 = torch.from_numpy(librosa.yin(waveform, fmin=50, fmax=550, hop_length=100))
# word_roll, tone_roll = self.get_labels(self.annotations[self.dataset_index.loc[audio_fn, 'index']], self.dataset_index.loc[audio_fn,'duration'])
words = self.dataset_index.loc[audio_fn, 'pinyin']
w = words.split(' ')
word_roll = []
for i in range(0, len(w)):
if len(w[i]) != 0:
if self.pinyin.get(w[i][0:-1]) == None:
self.pinyin[w[i][0:-1]] = len(self.pinyin)
word_roll.append(self.pinyin[w[i][0:-1]])
tones = self.dataset_index.loc[audio_fn, 'tone']
t = tones.split(' ')
tone_roll = []
for tone in t:
if len(tone) != 0:
tone_roll.append(int(tone))
spectrogram_clip = None
f0_clip = None
word_clip = None
tone_clip = None
# create clips
start_frame = int(start_sec * self.frame_per_sec)
end_frame = start_frame + 1600
# print(start_frame, end_frame)
spectrogram_clip = mel_spec[:, start_frame:end_frame].T
f0_clip = f0[start_sec:end_sec]
#word_clip = word_roll[start_frame:end_frame]
#tone_clip = tone_roll[start_frame:end_frame]
# print(tone_roll)
return spectrogram_clip, f0_clip, torch.Tensor(word_roll), torch.Tensor(tone_roll) #word_clip, tone_clip
def get_labels(self, annotation_data, duration):
'''
This function read annotation from file, and then convert annotation from note-level to frame-level
Because we will be using frame-level labels in training.
'''
frame_num = math.ceil(duration * self.frame_per_sec)
word_roll = torch.zeros(size=(frame_num + 1,), dtype=torch.long)
tone_roll = torch.zeros(size=(frame_num + 1,), dtype=torch.long)
for note in annotation_data:
start_time, end_time, mark = note # Assuming annotation format: (start_time, end_time, pitch)
# Convert note start and end times to frame indices
start_frame = int(start_time * self.frame_per_sec)
end_frame = int(end_time * self.frame_per_sec)
# Clip frame indices to be within the valid range, no need in this task
start_frame = max(0, min(frame_num, start_frame))
end_frame = max(0, min(frame_num, end_frame))
#print(start_frame, end_frame)
# WORD LEVEL Mark the frames corresponding to the note
word_roll[start_frame:end_frame+1] = self.pinyin[mark[:-1]]
tone_roll[start_frame:end_frame+1] = int(mark[-1])
# print(tone_roll)
return word_roll, tone_roll