jiawei-ren
init
e8481f2
raw
history blame
9.72 kB
import gradio as gr
import matplotlib.pyplot as plt
import torch
import seaborn as sns
import pandas as pd
import os
import os.path as osp
import ffmpeg
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.modules.loss import _Loss
from torch.utils.data import Dataset, DataLoader
NUM_PER_BUCKET = 1000
NOISE_SIGMA = 1
Y_UB = 10
Y_LB = 0
K = 1
B = 0
NUM_SEG = 5
sns.set_theme(palette='colorblind')
NUM_EPOCHS = 100
PRINT_FREQ = NUM_EPOCHS // 20
NUM_TRAIN_SAMPLES = NUM_PER_BUCKET * NUM_SEG
BATCH_SIZE = 256
def make_dataframe(x, y, method=None):
x = list(x[:, 0].detach().numpy())
y = list(y[:, 0].detach().numpy())
if method is not None:
method = [method for _ in range(len(x))]
df = pd.DataFrame({'x': x, 'y': y, 'Method': method})
else:
df = pd.DataFrame({'x': x, 'y': y})
return df
Y_demo = torch.linspace(Y_LB, Y_UB, 2).unsqueeze(-1)
X_demo = (Y_demo - B) / K
df_oracle = make_dataframe(X_demo, Y_demo, 'Oracle')
def prepare_data():
interval = (Y_UB - Y_LB) / NUM_SEG
all_x, all_y = [], []
for i in range(NUM_SEG):
uniform_y_distribution = torch.distributions.Uniform(Y_UB - (i+1)*interval, Y_UB-i*interval)
y_uniform = uniform_y_distribution.sample((NUM_TRAIN_SAMPLES, 1))
noise_distribution = torch.distributions.Normal(loc=0, scale=NOISE_SIGMA)
noise = noise_distribution.sample((NUM_TRAIN_SAMPLES, 1))
y_uniform_oracle = y_uniform - noise
x_uniform = (y_uniform_oracle - B) / K
all_x.append(x_uniform)
all_y.append(y_uniform)
return all_x, all_y
def select_data(all_x, all_y, sel_num):
sel_x, sel_y = [], []
prob = []
for i in range(NUM_SEG):
sel_x += all_x[i][:sel_num[i]]
sel_y += all_y[i][:sel_num[i]]
prob += [torch.tensor(sel_num[i]).float() for _ in range(sel_num[i])]
sel_x = torch.stack(sel_x)
sel_y = torch.stack(sel_y)
prob = torch.stack(prob)
return sel_x, sel_y, prob
def unzip_dataloader(training_loader):
all_x = []
all_y = []
for data, label, _ in training_loader:
all_x.append(data)
all_y.append(label)
all_x = torch.cat(all_x)
all_y = torch.cat(all_y)
return all_x, all_y
# Train the model
def train(train_loader, training_bundle, num_epochs):
training_df = make_dataframe(*unzip_dataloader(train_loader))
for epoch in range(num_epochs):
for model, optimizer, scheduler, criterion, criterion_name in training_bundle:
model.train()
for data, target, prob in train_loader:
optimizer.zero_grad()
pred = model(data)
if criterion_name == 'Reweight':
loss = criterion(pred, target, prob)
else:
loss = criterion(pred, target)
loss.backward()
optimizer.step()
scheduler.step()
if (epoch + 1) % PRINT_FREQ == 0:
visualize(training_df, training_bundle, epoch)
def visualize(training_df, training_bundle, epoch):
df = df_oracle
for model, optimizer, scheduler, criterion, criterion_name in training_bundle:
model.eval()
y = model(X_demo)
df = df.append(make_dataframe(X_demo, y, criterion_name), ignore_index=True)
sns.lineplot(data=df, x='x', y='y', hue='Method', estimator=None, ci=None)
sns.scatterplot(data=training_df, x='x', y='y', color='#003ea1', alpha=0.05, linewidths=0, s=100)
plt.xlim((Y_LB - B) / K, (Y_UB - B) / K)
plt.ylim(Y_LB, Y_UB)
plt.gca().axes.set_xlabel(r'$x$', fontsize=10)
plt.gca().axes.set_ylabel(r'$y$', fontsize=10)
plt.savefig('train_log/{:05d}.png'.format(epoch+1), bbox_inches='tight')
plt.close()
def make_video():
if osp.isfile('movie.mp4'):
os.remove('movie.mp4')
(
ffmpeg
.input('train_log/*.png', pattern_type='glob', framerate=3)
.output('movie.mp4')
.run()
)
class ReweightL2(_Loss):
def __init__(self, reweight='inverse'):
super(ReweightL2, self).__init__()
self.reweight = reweight
def forward(self, pred, target, prob):
reweight = self.reweight
if reweight == 'inverse':
inv_prob = prob.pow(-1)
elif reweight == 'sqrt_inv':
inv_prob = prob.pow(-0.5)
else:
raise NotImplementedError
inv_prob = inv_prob / inv_prob.sum()
loss = F.mse_loss(pred, target, reduction='none').sum(-1) * inv_prob
loss = loss.sum()
return loss
# we use a linear layer to regress the weight from height
class LinearModel(nn.Module):
def __init__(self, input_dim, output_dim):
super(LinearModel, self).__init__()
self.mlp = nn.Sequential(
nn.Linear(input_dim, output_dim),
)
def forward(self, x):
x = self.mlp(x)
return x
def prepare_model():
model = LinearModel(input_dim=1, output_dim=1)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-2, momentum=0.9)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=NUM_EPOCHS)
return model, optimizer, scheduler
class BMCLoss(_Loss):
def __init__(self):
super(BMCLoss, self).__init__()
self.noise_sigma = NOISE_SIGMA
def forward(self, pred, target):
pred = pred.reshape(-1, 1)
target = target.reshape(-1, 1)
noise_var = self.noise_sigma ** 2
loss = bmc_loss(pred, target, noise_var)
return loss
def bmc_loss(pred, target, noise_var):
logits = - 0.5 * (pred - target.T).pow(2) / noise_var
loss = F.cross_entropy(logits, torch.arange(pred.shape[0]))
return loss * (2 * noise_var)
def regress(train_loader):
training_bundle = []
criterions = {
'MSE': torch.nn.MSELoss(),
'Reweight': ReweightL2(),
'Balanced MSE': BMCLoss(),
}
for criterion_name in criterions:
criterion = criterions[criterion_name]
model, optimizer, scheduler = prepare_model()
training_bundle.append((model, optimizer, scheduler, criterion, criterion_name))
train(train_loader, training_bundle, NUM_EPOCHS)
class DummyDataset(Dataset):
def __init__(self, inputs, targets, prob):
self.inputs = inputs
self.targets = targets
self.prob = prob
def __getitem__(self, index):
return self.inputs[index], self.targets[index], self.prob[index]
def __len__(self):
return len(self.inputs)
def run(num1, num2, num3, num4, num5, random_seed, submit):
sel_num = [num1, num2, num3, num4, num5]
sel_num = [int(num/100*NUM_PER_BUCKET) for num in sel_num]
torch.manual_seed(int(random_seed))
all_x, all_y = prepare_data()
sel_x, sel_y, prob = select_data(all_x, all_y, sel_num)
train_loader = DataLoader(DummyDataset(sel_x, sel_y, prob), BATCH_SIZE, shuffle=True)
training_df = make_dataframe(sel_x, sel_y)
g = sns.jointplot(data=training_df, x='x', y='y', color='#003ea1', alpha=0.1, linewidths=0, s=100,
marginal_kws=dict(bins=torch.linspace(Y_LB, Y_UB, steps=NUM_SEG+1), rug=True),
xlim=((Y_LB - B) / K, (Y_UB - B) / K),
ylim=(Y_LB, Y_UB),
space=0.1,
height=8,
ratio=2
)
g.ax_marg_x.remove()
sns.lineplot(data=df_oracle, x='x', y='y', hue='Method', ax=g.ax_joint, legend=False)
plt.gca().axes.set_xlabel(r'$x$', fontsize=10)
plt.gca().axes.set_ylabel(r'$y$', fontsize=10)
plt.savefig('training_data.png',bbox_inches='tight')
plt.close()
if submit == 0:
text = "Press \"Start Regressing!\" if your are happy with the training data"
else:
text = "Press \"Prepare Training Data\" to change the training data"
if submit == 1:
if not osp.exists('train_log'):
os.mkdir('train_log')
for f in os.listdir('train_log'):
os.remove(osp.join('train_log', f))
regress(train_loader)
make_video()
output = 'train_log/{:05d}.png'.format(NUM_EPOCHS) if submit==1 else None
video = "movie.mp4" if submit==1 else None
return 'training_data.png', text, output, video
iface = gr.Interface(
fn=run,
inputs=[
gr.inputs.Slider(0, 100, default=2, step=1, label='Label percentage in [0, 2)'),
gr.inputs.Slider(0, 100, default=20, step=1, label='Label percentage in [2, 4)'),
gr.inputs.Slider(0, 100, default=100, step=1, label='Label percentage in [4, 6)'),
gr.inputs.Slider(0, 100, default=20, step=1, label='Label percentage in [6, 8)'),
gr.inputs.Slider(0, 100, default=2, step=1, label='Label percentage in [8, 10)'),
gr.inputs.Number(default=0, label='Random Seed', optional=False),
gr.inputs.Radio(['Prepare Training Data', 'Start Regressing!'],
type="index", default=None, label='Mode', optional=False),
],
outputs=[
gr.outputs.Image(type="file", label="Training data"),
gr.outputs.Textbox(type="auto", label='What\' s next?'),
gr.outputs.Image(type="file", label="Regression result"),
gr.outputs.Video(type='mp4', label='Training process')
],
live=True,
allow_flagging='never',
title="Balanced MSE for Imbalanced Visual Regression [CVPR 2022]",
description="Welcome to the demo for Balanced MSE &#9878;. In this demo, we will work on a simple task: imbalanced <i>linear</i> regression. <br>"
"To get started, drag the sliders &#128071;&#128071; and create your label distribution!"
)
iface.launch()