Cacau commited on
Commit
5c5529d
·
1 Parent(s): 831b048

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -30
app.py CHANGED
@@ -1,42 +1,18 @@
1
  import gradio as gr
2
- import transforms
3
  import requests
4
  import io
5
  from PIL import Image
6
  from transformers import pipeline
7
- from torchvision import transforms
8
 
9
  title = "Fine Tuned SD Model - Authoral stylization"
10
  description = "Generate images trained in an authoral illustration model."
11
  article = "<p style='text-align: center'><a href='https://news.machinelearning.sg/posts/beautiful_profile_pics_remove_background_image_with_deeplabv3/'>Blog</a> | <a href='https://github.com/eugenesiow/practical-ml'>Github Repo</a></p>"
12
 
 
 
 
13
 
14
- gr.Interface.load(
15
- "spaces/Cacau/heart-of-painting",
16
 
17
- demo = gr.Interface(
18
- fn=greet,
19
- inputs=gr.Textbox(lines=2, placeholder="Name Here..."),
20
- outputs="text",
21
- )
22
-
23
-
24
- with gr.Blocks(theme=gr.themes.Glass()) as demo:
25
- inputs=[gr.Textbox(label="Prompt", source="input box")]
26
- output=[gr.Ima]
27
- ).launch()
28
-
29
- def query(payload):
30
- response = requests.post(API_URL, headers=headers, json=payload)
31
- return response.content
32
- image_bytes = query({
33
- "inputs":gr.Textbox(lines=2, placeholder="Your prompt here..."),
34
- })
35
-
36
- # You can access the image with PIL.Image for example
37
- import io
38
- from PIL import Image
39
- image = Image.open(io.BytesIO(image_bytes))
40
-
41
- return "This is your generated image:" + image "**Save it in your files!"
42
- demo.launch()
 
1
  import gradio as gr
 
2
  import requests
3
  import io
4
  from PIL import Image
5
  from transformers import pipeline
 
6
 
7
  title = "Fine Tuned SD Model - Authoral stylization"
8
  description = "Generate images trained in an authoral illustration model."
9
  article = "<p style='text-align: center'><a href='https://news.machinelearning.sg/posts/beautiful_profile_pics_remove_background_image_with_deeplabv3/'>Blog</a> | <a href='https://github.com/eugenesiow/practical-ml'>Github Repo</a></p>"
10
 
11
+ def generate_image(prompt):
12
+ model = pipeline("image-to-image", model="Cacau/heart-of-painting")
13
+ return model(prompt)[0]
14
 
15
+ inputs = gr.inputs.Textbox(label="Prompt", placeholder="Your prompt here...")
16
+ output = gr.outputs.Image(label="Generated Image")
17
 
18
+ gr.Interface(generate_image, inputs, output, title=title, description=description, article=article).launch()