File size: 17,593 Bytes
08b59ae
 
cbcd9d2
08b59ae
 
22db5e3
 
 
 
 
08b59ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf1f436
9995b35
08b59ae
 
 
 
 
 
 
 
 
 
 
 
bf1f436
 
 
08b59ae
9c2be66
08b59ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c2be66
 
 
 
08b59ae
 
 
 
 
 
 
 
50d3706
 
22db5e3
 
 
 
 
862aea5
6d27c94
22db5e3
9995b35
22db5e3
 
 
 
 
 
3d407d8
22db5e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9995b35
 
22db5e3
 
9995b35
 
 
22db5e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50d3706
22db5e3
 
 
 
 
8ccce28
1413861
8ccce28
 
 
7d68525
22db5e3
9c2be66
 
 
 
524e417
9c2be66
 
 
 
 
 
 
524e417
9c2be66
524e417
9c2be66
 
 
e5c62b5
 
8ed5868
 
 
e5c62b5
 
 
 
 
 
 
9c2be66
e5c62b5
9c2be66
e5c62b5
 
 
 
 
8ed5868
 
e5c62b5
 
 
 
 
 
6a2554d
 
9995b35
 
 
 
9c67e28
 
 
 
9995b35
 
 
b90a585
9481c31
9995b35
7d68525
9481c31
9995b35
b90a585
9c67e28
 
 
a1835a8
9c67e28
 
 
 
f935a58
e83043c
b90a585
9c67e28
 
 
 
 
 
 
 
 
 
 
 
 
f935a58
b90a585
9c67e28
 
b90a585
9995b35
1dedc0a
3a7987b
65106f7
c6b10c9
020e205
c9afbab
9995b35
ded6b88
9995b35
 
 
08b59ae
 
 
9995b35
 
 
08b59ae
22db5e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c2be66
22db5e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d407d8
 
c5caa40
22db5e3
 
 
 
 
 
 
 
 
dd12354
 
9c2be66
 
e5c62b5
9995b35
 
 
c9af7fb
 
 
e5c62b5
 
7d68525
 
 
 
 
 
e5c62b5
 
7d68525
e5c62b5
 
08b59ae
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import os
import gradio as gr
from transformers import pipeline
import spacy
import lib.read_pdf
import pandas as pd
import re
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import io
# Initialize spaCy model
nlp = spacy.load('en_core_web_sm')
nlp.add_pipe('sentencizer')

def split_in_sentences(text):
    doc = nlp(text)
    return [str(sent).strip() for sent in doc.sents]

def make_spans(text, results):
    results_list = [res['label'] for res in results]
    facts_spans = list(zip(split_in_sentences(text), results_list))
    return facts_spans

# Initialize pipelines
summarizer = pipeline("summarization", model="human-centered-summarization/financial-summarization-pegasus")
fin_model = pipeline("sentiment-analysis", model='yiyanghkust/finbert-tone', tokenizer='yiyanghkust/finbert-tone')
fin_model_bis = pipeline("sentiment-analysis", model='ProsusAI/finbert', tokenizer='ProsusAI/finbert')
table_to_text = pipeline('text2text-generation', model='google/flan-t5-large')

def summarize_text(text):
    resp = summarizer(text)
    return resp[0]['summary_text']

def text_to_sentiment(text):
    sentiment = fin_model(text)[0]["label"]
    return sentiment

def fin_ext(text):
    results = fin_model(split_in_sentences(text))
    return make_spans(text, results)
def fin_ext_bis(text):
    results = fin_model_bis(split_in_sentences(text))
    return make_spans(text, results)

def extract_and_paragraph(pdf1, pdf2, paragraph):
    if not pdf1 or not pdf2:
        return [], []

    pdf1_path = os.path.join(PDF_FOLDER, pdf1)
    pdf2_path = os.path.join(PDF_FOLDER, pdf2)

    # Extract and format paragraphs
    paragraphs_1 = lib.read_pdf.extract_and_format_paragraphs(pdf1_path)
    paragraphs_2 = lib.read_pdf.extract_and_format_paragraphs(pdf2_path)

    start_keyword = "Main risks to"
    end_keywords = ["4. Appendix", "Annex:", "4. Annex", "Detailed tables", "ACKNOWLEDGEMENTS", "STATISTICAL ANNEX", "PROSPECTS BY MEMBER STATES"]

    start_index1, end_index1 = lib.read_pdf.find_text_range(paragraphs_1, start_keyword, end_keywords)
    start_index2, end_index2 = lib.read_pdf.find_text_range(paragraphs_2, start_keyword, end_keywords)
    paragraphs_1 = lib.read_pdf.extract_relevant_text(paragraphs_1, start_index1, end_index1)
    paragraphs_2 = lib.read_pdf.extract_relevant_text(paragraphs_2, start_index2, end_index2)
    if paragraph:
        paragraphs_1 = lib.read_pdf.split_text_into_paragraphs(paragraphs_1, 0)
        paragraphs_2 = lib.read_pdf.split_text_into_paragraphs(paragraphs_2, 0)
    
    return paragraphs_1, paragraphs_2

# Gradio interface setup
PDF_FOLDER = "data"

def get_pdf_files(folder):
    return [f for f in os.listdir(folder) if f.endswith('.pdf')]

def show(name):
    return f"{name}"

def get_excel_files(folder):
    return [f for f in os.listdir(folder) if f.endswith('.xlsx')]

def get_sheet_names(file):
    xls = pd.ExcelFile(os.path.join(PDF_FOLDER, file))
    return gr.update(choices=xls.sheet_names)

    
def process_and_compare(file1, sheet1, file2, sheet2):
    def process_file(file_path, sheet_name):
        # Extract year from file name
        year = int(re.search(r'(\d{4})', file_path).group(1))
        
        # Load the Excel file
        df = pd.read_excel(os.path.join(PDF_FOLDER, file_path), sheet_name=sheet_name, index_col=0)
        
        # Define expected columns based on extracted year
        historical_col = f'Historical {year - 1}'
        baseline_cols = [f'Baseline {year}', f'Baseline {year + 1}', f'Baseline {year + 2}']
        adverse_cols = [f'Adverse {year}', f'Adverse {year + 1}', f'Adverse {year + 2}']
        level_deviation_col = f'Level Deviation {year + 2}'

        # Drop rows and reset index
        df = df.iloc[4:].reset_index(drop=True)

        # Define the new column names
        new_columns = ['Country', 'Code', historical_col] + baseline_cols + adverse_cols + ['Adverse Cumulative', 'Adverse Minimum', level_deviation_col]
        
        # Ensure the number of columns matches
        if len(df.columns) == len(new_columns):
            df.columns = new_columns
        else:
            raise ValueError(f"Expected {len(new_columns)} columns, but found {len(df.columns)} columns in the data.")
        columns = ['Country', f'Adverse {year}', f'Adverse {year+1}', f'Adverse {year+2}', 'Adverse Cumulative']
        return df, df[columns]

    # Process both files
    global stored_df1, stored_df2
    df1, stored_df1 = process_file(file1, sheet1)
    df2, stored_df2 = process_file(file2, sheet2)
    year1 = int(re.search(r'(\d{4})', file1).group(1))
    year2 = int(re.search(r'(\d{4})', file2).group(1))

    # Merge dataframes on 'Country'
    merged_df = pd.merge(df2, df1, on='Country', suffixes=(f'_{year1}', f'_{year2}'))
    merged_df['Difference adverse cumulative growth'] = merged_df[f'Adverse Cumulative_{year2}'] - merged_df[f'Adverse Cumulative_{year1}']
    # Ensure data types are correct
    merged_df['Country'] = merged_df['Country'].astype(str)
    merged_df['Difference adverse cumulative growth'] = pd.to_numeric(merged_df['Difference adverse cumulative growth'], errors='coerce')

    # Create histogram plot with color coding
    fig, ax = plt.subplots(figsize=(12, 8))
    colors = plt.get_cmap('tab20').colors  # Use a colormap with multiple colors
    num_countries = len(merged_df['Country'])
    
    bars = ax.bar(merged_df['Country'], merged_df['Difference adverse cumulative growth'], color=colors[:num_countries])
    
    # Add a legend
    handles = [patches.Patch(color=color, label=country) for color, country in zip(colors[:num_countries], merged_df['Country'])]
    ax.legend(handles=handles, title='Countries', bbox_to_anchor=(1.05, 1), loc='upper left')
    
    ax.set_title(f'Histogram of Difference between Adverse cumulative growth of {year2} and {year1} for {sheet1}')
    ax.set_xlabel('Country')
    ax.set_ylabel('Difference')
    plt.xticks(rotation=90)

    # Save plot to a file
    file_path = 'output/plot.png'
    plt.savefig(file_path, format='png', bbox_inches='tight')
    plt.close()

    return file_path, gr.update(choices=stored_df1.Country.values.tolist()), gr.update(choices=stored_df2.Country.values.tolist())

def find_sentences_with_keywords(text, keywords):
    # Split text into sentences using regular expression to match sentence-ending punctuation
    sentences = re.split(r'(?<=[.!?])\s+', text)
    
    matched_sentences = set()  # Use a set to store unique sentences
    
    # For each keyword, find sentences that contain the keyword as a whole word
    for keyword in keywords:
        keyword_pattern = re.compile(rf'\b{re.escape(keyword)}\b', re.IGNORECASE)  # Using word boundaries

        for sentence in sentences:
            if keyword_pattern.search(sentence):
                matched_sentences.add(sentence)  # Add to set to ensure uniqueness

    return list(matched_sentences)  # Convert set back to list for consistent output


# Main function to process both PDFs based on the Excel file names and the sheet name
def process_pdfs_and_analyze_sentiment(file1, file2, sheet):
    # Extract text from both PDFs based on the file name
    pdf_file1 = file1.replace(".xlsx", ".pdf")
    pdf_file2 = file2.replace(".xlsx", ".pdf")
    text1, text2 =extract_and_paragraph(pdf_file1, pdf_file2, False)
    # Use sheet name as the keyword to find relevant sentences
    keywords = {
        'GDP': ['GDP'], 
        'HICP': ['HICP'], 
        'RRE prices': ['RRE', 'residential'], 
        'CRE prices': ['CRE', 'commercial'], 
        'Unemployment': ['unemployment']
    }
    selected_keywords = keywords.get(sheet, [])

    # Find sentences containing the keywords
    sentences1 = find_sentences_with_keywords(text1, selected_keywords)
    sentences2 = find_sentences_with_keywords(text2, selected_keywords)

    # Concatenate all sentences for each PDF
    text_pdf1 = "\n".join(sentences1)
    text_pdf2 = "\n".join(sentences2)
    
    # Perform sentiment analysis on the extracted sentences for each PDF
    result_pdf1 = fin_ext_bis(text_pdf1)
    result_pdf2 = fin_ext_bis(text_pdf2)
    
    return result_pdf1, result_pdf2
#def change_choices(df):
#    return gr.update(choices=df.Country.values.tolist())
    
def generate_text(df, country, theme):
    # Filter the dataframe based on the country
    row = df[df['Country'] == country].iloc[0]
    for column in df.columns:
        if column != 'Country':
            df[column] = df[column].apply(lambda x: f"{x:.6f}%")

    # Convert the row to a string format for prompt
    row_str = row.to_string(index=True)
    
    simple_prompt = f"""
    Here is the data for {theme} in {country}:
    {row_str}
    
    Summarize the adverse growth for {theme} in {country}. Highlight any increase or decrease compared to previous years and include the cumulative result.
    """
    prompt = f"""
    Here are two examples of how to summarize adverse growth data for a given country:
    
    Example 1 (Australia - GDP):
    Country: Australia
    Adverse 2020: -0.427975%
    Adverse 2021: -1.987167%
    Adverse 2022: -1.195906%
    Adverse Cumulative: -3.573762%
    The topic is GDP.
    
    Summary:
    In the adverse scenario, the growth for GDP in Australia decreased by 0.427975% in 2020, worsened further by 1.987167% in 2021, and slightly improved by 1.195906% in 2022, resulting in an adverse cumulative decrease of 3.573762%.
    
    Example 2 (Poland - HICP):
    Country: Poland
    Adverse 2023: 17.656378%
    Adverse 2024: 8.188389%
    Adverse 2025: 4.321625%
    Adverse Cumulative: 32.79156%
    The topic is HICP.
    
    Summary:
    In the adverse scenario, the HICP rate in Poland was 17.656378% in 2023, decreased to 8.188389% in 2024, and continued to decrease to 4.321625% in 2025. The cumulative adverse HICP rate over the period is 32.79156%.
    
    Now, use the following data for {theme} in {country} to generate a similar summary:
    {row_str}
    
    The topic is {theme}. Summarize the data, ensuring that the summary reflects the theme accurately. Follow the pattern of the examples provided and describe any changes in values using terms like 'increase' and 'decrease'. Make sure the output aligns with the data.
    """







    # Generate the descriptive text using the model
    result = table_to_text(prompt, max_length=200, temperature = 1, top_p = 1)[0]['generated_text']
    
    return result
# Global variable
stored_paragraphs_1 = []
stored_paragraphs_2 = []

stored_df1 = []
stored_df2 = []

with gr.Blocks() as demo:
    with gr.Tab("Financial Report Text Analysis"):
        gr.Markdown("## Financial Report Paragraph Selection and Analysis on adverse macro-economy scenario")

        with gr.Row():
            # Upload PDFs
            with gr.Column():
                pdf1 = gr.Dropdown(choices=get_pdf_files(PDF_FOLDER), label="Select PDF 1")
                pdf2 = gr.Dropdown(choices=get_pdf_files(PDF_FOLDER), label="Select PDF 2")

            with gr.Column():
                b1 = gr.Button("Extract and Display Paragraphs")
                paragraph_1_dropdown = gr.Dropdown(label="Select Paragraph from PDF 1")
                paragraph_2_dropdown = gr.Dropdown(label="Select Paragraph from PDF 2")

                def update_paragraphs(pdf1, pdf2):
                    global stored_paragraphs_1, stored_paragraphs_2
                    stored_paragraphs_1, stored_paragraphs_2 = extract_and_paragraph(pdf1, pdf2, True)
                    updated_dropdown_1 = [f"Paragraph {i+1}: {p[:100]}..." for i, p in enumerate(stored_paragraphs_1)]
                    updated_dropdown_2 = [f"Paragraph {i+1}: {p[:100]}..." for i, p in enumerate(stored_paragraphs_2)]
                    return gr.update(choices=updated_dropdown_1), gr.update(choices=updated_dropdown_2)

                b1.click(fn=update_paragraphs, inputs=[pdf1, pdf2], outputs=[paragraph_1_dropdown, paragraph_2_dropdown])

        with gr.Row():
            # Process the selected paragraph from PDF 1
            with gr.Column():
                gr.Markdown("### PDF 1 Analysis")
                selected_paragraph_1 = gr.Textbox(label="Selected Paragraph 1 Content", lines=4)
                summarize_btn1 = gr.Button("Summarize Text from PDF 1")
                summary_textbox_1 = gr.Textbox(label="Summary for PDF 1", lines=2)
                summarize_btn1.click(fn=lambda p: process_paragraph_1_sum(p), inputs=paragraph_1_dropdown, outputs=summary_textbox_1)
                sentiment_btn1 = gr.Button("Classify Financial Tone from PDF 1")
                sentiment_textbox_1 = gr.Textbox(label="Classification for PDF 1", lines=1)
                sentiment_btn1.click(fn=lambda p: process_paragraph_1_sent(p), inputs=paragraph_1_dropdown, outputs=sentiment_textbox_1)
                analyze_btn1 = gr.Button("Analyze Financial Tone on each sentence with yiyanghkust/finbert-tone")
                fin_spans_1 = gr.HighlightedText(label="Financial Tone Analysis for PDF 1")
                analyze_btn1.click(fn=lambda p: process_paragraph_1_sent_tone(p), inputs=paragraph_1_dropdown, outputs=fin_spans_1)
                analyze_btn1_ = gr.Button("Analyze Financial Tone on each sentence with ProsusAI/finbert")
                fin_spans_1_ = gr.HighlightedText(label="Financial Tone Analysis for PDF 1 bis")
                analyze_btn1_.click(fn=lambda p: process_paragraph_1_sent_tone_bis(p), inputs=paragraph_1_dropdown, outputs=fin_spans_1_)

            # Process the selected paragraph from PDF 2
            with gr.Column():
                gr.Markdown("### PDF 2 Analysis")
                selected_paragraph_2 = gr.Textbox(label="Selected Paragraph 2 Content", lines=4)
                selected_paragraph_2.change(show, paragraph_2_dropdown, selected_paragraph_2)
                summarize_btn2 = gr.Button("Summarize Text from PDF 2")
                summary_textbox_2 = gr.Textbox(label="Summary for PDF 2", lines=2)
                summarize_btn2.click(fn=lambda p: process_paragraph_2_sum(p), inputs=paragraph_2_dropdown, outputs=summary_textbox_2)
                sentiment_btn2 = gr.Button("Classify Financial Tone from PDF 2")
                sentiment_textbox_2 = gr.Textbox(label="Classification for PDF 2", lines=1)
                sentiment_btn2.click(fn=lambda p: process_paragraph_2_sent(p), inputs=paragraph_2_dropdown, outputs=sentiment_textbox_2)
                analyze_btn2 = gr.Button("Analyze Financial Tone on each sentence with yiyanghkust/finbert-tone")
                fin_spans_2 = gr.HighlightedText(label="Financial Tone Analysis for PDF 2")
                analyze_btn2.click(fn=lambda p: process_paragraph_2_sent_tone(p), inputs=paragraph_2_dropdown, outputs=fin_spans_2)
                analyze_btn2_ = gr.Button("Analyze Financial Tone on each sentence with ProsusAI/finbert")
                fin_spans_2_ = gr.HighlightedText(label="Financial Tone Analysis for PDF 2 bis")
                analyze_btn2_.click(fn=lambda p: process_paragraph_2_sent_tone_bis(p), inputs=paragraph_2_dropdown, outputs=fin_spans_2_)

    with gr.Tab("Financial Report Table Analysis"):
        # New tab content goes here
        gr.Markdown("## Excel Data Comparison")

        with gr.Row():
            with gr.Column():
                file1 = gr.Dropdown(choices=get_excel_files(PDF_FOLDER), label="Select Excel File 1")
                file2 = gr.Dropdown(choices=get_excel_files(PDF_FOLDER), label="Select Excel File 2")
                sheet = gr.Dropdown(choices=["GDP", "HICP", "RRE prices", "Unemployment", "CRE prices"], label="Select Sheet for File 1 and 2")
            
            with gr.Column():
                result = gr.Image(label="Comparison pLot")
        
        def update_sheets(file):
            return get_sheet_names(file)
        
        
        b1 = gr.Button("Compare Data")
        b2 = gr.Button("Extract text information")
        
        with gr.Row():
            with gr.Column():
                sentiment_results_pdf1 = gr.HighlightedText(label="Sentiment Analysis - PDF 1")
                country_1_dropdown = gr.Dropdown(label="Select Country from Excel File 1")
                summarize_btn1_country = gr.Button("Summary for the selected country")
                text_result_df1 = gr.Textbox(label="Sentence for excel file 1", lines=2)
                summarize_btn1_country.click(fn=lambda country, theme: generate_text(stored_df1, country, theme),
                             inputs=[country_1_dropdown, sheet],
                             outputs=text_result_df1)
            with gr.Column():
                sentiment_results_pdf2 = gr.HighlightedText(label="Sentiment Analysis - PDF 2")
                country_2_dropdown = gr.Dropdown(label="Select Country from Excel File 2")
                summarize_btn2_country = gr.Button("Summary for the selected country")
                text_result_df2 = gr.Textbox(label="Sentence for excel file 2", lines=2)
                summarize_btn2_country.click(fn=lambda country, theme: generate_text(stored_df2, country, theme),
                             inputs=[country_2_dropdown, sheet],
                             outputs=text_result_df2)
    
        # Button to extract text from PDFs and perform sentiment analysis
        b1.click(fn=process_and_compare, inputs=[file1, sheet, file2, sheet], outputs=[result,country_1_dropdown, country_2_dropdown])
        b2.click(fn=process_pdfs_and_analyze_sentiment, inputs=[file1, file2, sheet], outputs=[sentiment_results_pdf1, sentiment_results_pdf2])


demo.launch()