Spaces:
Sleeping
Sleeping
File size: 17,593 Bytes
08b59ae cbcd9d2 08b59ae 22db5e3 08b59ae bf1f436 9995b35 08b59ae bf1f436 08b59ae 9c2be66 08b59ae 9c2be66 08b59ae 50d3706 22db5e3 862aea5 6d27c94 22db5e3 9995b35 22db5e3 3d407d8 22db5e3 9995b35 22db5e3 9995b35 22db5e3 50d3706 22db5e3 8ccce28 1413861 8ccce28 7d68525 22db5e3 9c2be66 524e417 9c2be66 524e417 9c2be66 524e417 9c2be66 e5c62b5 8ed5868 e5c62b5 9c2be66 e5c62b5 9c2be66 e5c62b5 8ed5868 e5c62b5 6a2554d 9995b35 9c67e28 9995b35 b90a585 9481c31 9995b35 7d68525 9481c31 9995b35 b90a585 9c67e28 a1835a8 9c67e28 f935a58 e83043c b90a585 9c67e28 f935a58 b90a585 9c67e28 b90a585 9995b35 1dedc0a 3a7987b 65106f7 c6b10c9 020e205 c9afbab 9995b35 ded6b88 9995b35 08b59ae 9995b35 08b59ae 22db5e3 9c2be66 22db5e3 3d407d8 c5caa40 22db5e3 dd12354 9c2be66 e5c62b5 9995b35 c9af7fb e5c62b5 7d68525 e5c62b5 7d68525 e5c62b5 08b59ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
import os
import gradio as gr
from transformers import pipeline
import spacy
import lib.read_pdf
import pandas as pd
import re
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import io
# Initialize spaCy model
nlp = spacy.load('en_core_web_sm')
nlp.add_pipe('sentencizer')
def split_in_sentences(text):
doc = nlp(text)
return [str(sent).strip() for sent in doc.sents]
def make_spans(text, results):
results_list = [res['label'] for res in results]
facts_spans = list(zip(split_in_sentences(text), results_list))
return facts_spans
# Initialize pipelines
summarizer = pipeline("summarization", model="human-centered-summarization/financial-summarization-pegasus")
fin_model = pipeline("sentiment-analysis", model='yiyanghkust/finbert-tone', tokenizer='yiyanghkust/finbert-tone')
fin_model_bis = pipeline("sentiment-analysis", model='ProsusAI/finbert', tokenizer='ProsusAI/finbert')
table_to_text = pipeline('text2text-generation', model='google/flan-t5-large')
def summarize_text(text):
resp = summarizer(text)
return resp[0]['summary_text']
def text_to_sentiment(text):
sentiment = fin_model(text)[0]["label"]
return sentiment
def fin_ext(text):
results = fin_model(split_in_sentences(text))
return make_spans(text, results)
def fin_ext_bis(text):
results = fin_model_bis(split_in_sentences(text))
return make_spans(text, results)
def extract_and_paragraph(pdf1, pdf2, paragraph):
if not pdf1 or not pdf2:
return [], []
pdf1_path = os.path.join(PDF_FOLDER, pdf1)
pdf2_path = os.path.join(PDF_FOLDER, pdf2)
# Extract and format paragraphs
paragraphs_1 = lib.read_pdf.extract_and_format_paragraphs(pdf1_path)
paragraphs_2 = lib.read_pdf.extract_and_format_paragraphs(pdf2_path)
start_keyword = "Main risks to"
end_keywords = ["4. Appendix", "Annex:", "4. Annex", "Detailed tables", "ACKNOWLEDGEMENTS", "STATISTICAL ANNEX", "PROSPECTS BY MEMBER STATES"]
start_index1, end_index1 = lib.read_pdf.find_text_range(paragraphs_1, start_keyword, end_keywords)
start_index2, end_index2 = lib.read_pdf.find_text_range(paragraphs_2, start_keyword, end_keywords)
paragraphs_1 = lib.read_pdf.extract_relevant_text(paragraphs_1, start_index1, end_index1)
paragraphs_2 = lib.read_pdf.extract_relevant_text(paragraphs_2, start_index2, end_index2)
if paragraph:
paragraphs_1 = lib.read_pdf.split_text_into_paragraphs(paragraphs_1, 0)
paragraphs_2 = lib.read_pdf.split_text_into_paragraphs(paragraphs_2, 0)
return paragraphs_1, paragraphs_2
# Gradio interface setup
PDF_FOLDER = "data"
def get_pdf_files(folder):
return [f for f in os.listdir(folder) if f.endswith('.pdf')]
def show(name):
return f"{name}"
def get_excel_files(folder):
return [f for f in os.listdir(folder) if f.endswith('.xlsx')]
def get_sheet_names(file):
xls = pd.ExcelFile(os.path.join(PDF_FOLDER, file))
return gr.update(choices=xls.sheet_names)
def process_and_compare(file1, sheet1, file2, sheet2):
def process_file(file_path, sheet_name):
# Extract year from file name
year = int(re.search(r'(\d{4})', file_path).group(1))
# Load the Excel file
df = pd.read_excel(os.path.join(PDF_FOLDER, file_path), sheet_name=sheet_name, index_col=0)
# Define expected columns based on extracted year
historical_col = f'Historical {year - 1}'
baseline_cols = [f'Baseline {year}', f'Baseline {year + 1}', f'Baseline {year + 2}']
adverse_cols = [f'Adverse {year}', f'Adverse {year + 1}', f'Adverse {year + 2}']
level_deviation_col = f'Level Deviation {year + 2}'
# Drop rows and reset index
df = df.iloc[4:].reset_index(drop=True)
# Define the new column names
new_columns = ['Country', 'Code', historical_col] + baseline_cols + adverse_cols + ['Adverse Cumulative', 'Adverse Minimum', level_deviation_col]
# Ensure the number of columns matches
if len(df.columns) == len(new_columns):
df.columns = new_columns
else:
raise ValueError(f"Expected {len(new_columns)} columns, but found {len(df.columns)} columns in the data.")
columns = ['Country', f'Adverse {year}', f'Adverse {year+1}', f'Adverse {year+2}', 'Adverse Cumulative']
return df, df[columns]
# Process both files
global stored_df1, stored_df2
df1, stored_df1 = process_file(file1, sheet1)
df2, stored_df2 = process_file(file2, sheet2)
year1 = int(re.search(r'(\d{4})', file1).group(1))
year2 = int(re.search(r'(\d{4})', file2).group(1))
# Merge dataframes on 'Country'
merged_df = pd.merge(df2, df1, on='Country', suffixes=(f'_{year1}', f'_{year2}'))
merged_df['Difference adverse cumulative growth'] = merged_df[f'Adverse Cumulative_{year2}'] - merged_df[f'Adverse Cumulative_{year1}']
# Ensure data types are correct
merged_df['Country'] = merged_df['Country'].astype(str)
merged_df['Difference adverse cumulative growth'] = pd.to_numeric(merged_df['Difference adverse cumulative growth'], errors='coerce')
# Create histogram plot with color coding
fig, ax = plt.subplots(figsize=(12, 8))
colors = plt.get_cmap('tab20').colors # Use a colormap with multiple colors
num_countries = len(merged_df['Country'])
bars = ax.bar(merged_df['Country'], merged_df['Difference adverse cumulative growth'], color=colors[:num_countries])
# Add a legend
handles = [patches.Patch(color=color, label=country) for color, country in zip(colors[:num_countries], merged_df['Country'])]
ax.legend(handles=handles, title='Countries', bbox_to_anchor=(1.05, 1), loc='upper left')
ax.set_title(f'Histogram of Difference between Adverse cumulative growth of {year2} and {year1} for {sheet1}')
ax.set_xlabel('Country')
ax.set_ylabel('Difference')
plt.xticks(rotation=90)
# Save plot to a file
file_path = 'output/plot.png'
plt.savefig(file_path, format='png', bbox_inches='tight')
plt.close()
return file_path, gr.update(choices=stored_df1.Country.values.tolist()), gr.update(choices=stored_df2.Country.values.tolist())
def find_sentences_with_keywords(text, keywords):
# Split text into sentences using regular expression to match sentence-ending punctuation
sentences = re.split(r'(?<=[.!?])\s+', text)
matched_sentences = set() # Use a set to store unique sentences
# For each keyword, find sentences that contain the keyword as a whole word
for keyword in keywords:
keyword_pattern = re.compile(rf'\b{re.escape(keyword)}\b', re.IGNORECASE) # Using word boundaries
for sentence in sentences:
if keyword_pattern.search(sentence):
matched_sentences.add(sentence) # Add to set to ensure uniqueness
return list(matched_sentences) # Convert set back to list for consistent output
# Main function to process both PDFs based on the Excel file names and the sheet name
def process_pdfs_and_analyze_sentiment(file1, file2, sheet):
# Extract text from both PDFs based on the file name
pdf_file1 = file1.replace(".xlsx", ".pdf")
pdf_file2 = file2.replace(".xlsx", ".pdf")
text1, text2 =extract_and_paragraph(pdf_file1, pdf_file2, False)
# Use sheet name as the keyword to find relevant sentences
keywords = {
'GDP': ['GDP'],
'HICP': ['HICP'],
'RRE prices': ['RRE', 'residential'],
'CRE prices': ['CRE', 'commercial'],
'Unemployment': ['unemployment']
}
selected_keywords = keywords.get(sheet, [])
# Find sentences containing the keywords
sentences1 = find_sentences_with_keywords(text1, selected_keywords)
sentences2 = find_sentences_with_keywords(text2, selected_keywords)
# Concatenate all sentences for each PDF
text_pdf1 = "\n".join(sentences1)
text_pdf2 = "\n".join(sentences2)
# Perform sentiment analysis on the extracted sentences for each PDF
result_pdf1 = fin_ext_bis(text_pdf1)
result_pdf2 = fin_ext_bis(text_pdf2)
return result_pdf1, result_pdf2
#def change_choices(df):
# return gr.update(choices=df.Country.values.tolist())
def generate_text(df, country, theme):
# Filter the dataframe based on the country
row = df[df['Country'] == country].iloc[0]
for column in df.columns:
if column != 'Country':
df[column] = df[column].apply(lambda x: f"{x:.6f}%")
# Convert the row to a string format for prompt
row_str = row.to_string(index=True)
simple_prompt = f"""
Here is the data for {theme} in {country}:
{row_str}
Summarize the adverse growth for {theme} in {country}. Highlight any increase or decrease compared to previous years and include the cumulative result.
"""
prompt = f"""
Here are two examples of how to summarize adverse growth data for a given country:
Example 1 (Australia - GDP):
Country: Australia
Adverse 2020: -0.427975%
Adverse 2021: -1.987167%
Adverse 2022: -1.195906%
Adverse Cumulative: -3.573762%
The topic is GDP.
Summary:
In the adverse scenario, the growth for GDP in Australia decreased by 0.427975% in 2020, worsened further by 1.987167% in 2021, and slightly improved by 1.195906% in 2022, resulting in an adverse cumulative decrease of 3.573762%.
Example 2 (Poland - HICP):
Country: Poland
Adverse 2023: 17.656378%
Adverse 2024: 8.188389%
Adverse 2025: 4.321625%
Adverse Cumulative: 32.79156%
The topic is HICP.
Summary:
In the adverse scenario, the HICP rate in Poland was 17.656378% in 2023, decreased to 8.188389% in 2024, and continued to decrease to 4.321625% in 2025. The cumulative adverse HICP rate over the period is 32.79156%.
Now, use the following data for {theme} in {country} to generate a similar summary:
{row_str}
The topic is {theme}. Summarize the data, ensuring that the summary reflects the theme accurately. Follow the pattern of the examples provided and describe any changes in values using terms like 'increase' and 'decrease'. Make sure the output aligns with the data.
"""
# Generate the descriptive text using the model
result = table_to_text(prompt, max_length=200, temperature = 1, top_p = 1)[0]['generated_text']
return result
# Global variable
stored_paragraphs_1 = []
stored_paragraphs_2 = []
stored_df1 = []
stored_df2 = []
with gr.Blocks() as demo:
with gr.Tab("Financial Report Text Analysis"):
gr.Markdown("## Financial Report Paragraph Selection and Analysis on adverse macro-economy scenario")
with gr.Row():
# Upload PDFs
with gr.Column():
pdf1 = gr.Dropdown(choices=get_pdf_files(PDF_FOLDER), label="Select PDF 1")
pdf2 = gr.Dropdown(choices=get_pdf_files(PDF_FOLDER), label="Select PDF 2")
with gr.Column():
b1 = gr.Button("Extract and Display Paragraphs")
paragraph_1_dropdown = gr.Dropdown(label="Select Paragraph from PDF 1")
paragraph_2_dropdown = gr.Dropdown(label="Select Paragraph from PDF 2")
def update_paragraphs(pdf1, pdf2):
global stored_paragraphs_1, stored_paragraphs_2
stored_paragraphs_1, stored_paragraphs_2 = extract_and_paragraph(pdf1, pdf2, True)
updated_dropdown_1 = [f"Paragraph {i+1}: {p[:100]}..." for i, p in enumerate(stored_paragraphs_1)]
updated_dropdown_2 = [f"Paragraph {i+1}: {p[:100]}..." for i, p in enumerate(stored_paragraphs_2)]
return gr.update(choices=updated_dropdown_1), gr.update(choices=updated_dropdown_2)
b1.click(fn=update_paragraphs, inputs=[pdf1, pdf2], outputs=[paragraph_1_dropdown, paragraph_2_dropdown])
with gr.Row():
# Process the selected paragraph from PDF 1
with gr.Column():
gr.Markdown("### PDF 1 Analysis")
selected_paragraph_1 = gr.Textbox(label="Selected Paragraph 1 Content", lines=4)
summarize_btn1 = gr.Button("Summarize Text from PDF 1")
summary_textbox_1 = gr.Textbox(label="Summary for PDF 1", lines=2)
summarize_btn1.click(fn=lambda p: process_paragraph_1_sum(p), inputs=paragraph_1_dropdown, outputs=summary_textbox_1)
sentiment_btn1 = gr.Button("Classify Financial Tone from PDF 1")
sentiment_textbox_1 = gr.Textbox(label="Classification for PDF 1", lines=1)
sentiment_btn1.click(fn=lambda p: process_paragraph_1_sent(p), inputs=paragraph_1_dropdown, outputs=sentiment_textbox_1)
analyze_btn1 = gr.Button("Analyze Financial Tone on each sentence with yiyanghkust/finbert-tone")
fin_spans_1 = gr.HighlightedText(label="Financial Tone Analysis for PDF 1")
analyze_btn1.click(fn=lambda p: process_paragraph_1_sent_tone(p), inputs=paragraph_1_dropdown, outputs=fin_spans_1)
analyze_btn1_ = gr.Button("Analyze Financial Tone on each sentence with ProsusAI/finbert")
fin_spans_1_ = gr.HighlightedText(label="Financial Tone Analysis for PDF 1 bis")
analyze_btn1_.click(fn=lambda p: process_paragraph_1_sent_tone_bis(p), inputs=paragraph_1_dropdown, outputs=fin_spans_1_)
# Process the selected paragraph from PDF 2
with gr.Column():
gr.Markdown("### PDF 2 Analysis")
selected_paragraph_2 = gr.Textbox(label="Selected Paragraph 2 Content", lines=4)
selected_paragraph_2.change(show, paragraph_2_dropdown, selected_paragraph_2)
summarize_btn2 = gr.Button("Summarize Text from PDF 2")
summary_textbox_2 = gr.Textbox(label="Summary for PDF 2", lines=2)
summarize_btn2.click(fn=lambda p: process_paragraph_2_sum(p), inputs=paragraph_2_dropdown, outputs=summary_textbox_2)
sentiment_btn2 = gr.Button("Classify Financial Tone from PDF 2")
sentiment_textbox_2 = gr.Textbox(label="Classification for PDF 2", lines=1)
sentiment_btn2.click(fn=lambda p: process_paragraph_2_sent(p), inputs=paragraph_2_dropdown, outputs=sentiment_textbox_2)
analyze_btn2 = gr.Button("Analyze Financial Tone on each sentence with yiyanghkust/finbert-tone")
fin_spans_2 = gr.HighlightedText(label="Financial Tone Analysis for PDF 2")
analyze_btn2.click(fn=lambda p: process_paragraph_2_sent_tone(p), inputs=paragraph_2_dropdown, outputs=fin_spans_2)
analyze_btn2_ = gr.Button("Analyze Financial Tone on each sentence with ProsusAI/finbert")
fin_spans_2_ = gr.HighlightedText(label="Financial Tone Analysis for PDF 2 bis")
analyze_btn2_.click(fn=lambda p: process_paragraph_2_sent_tone_bis(p), inputs=paragraph_2_dropdown, outputs=fin_spans_2_)
with gr.Tab("Financial Report Table Analysis"):
# New tab content goes here
gr.Markdown("## Excel Data Comparison")
with gr.Row():
with gr.Column():
file1 = gr.Dropdown(choices=get_excel_files(PDF_FOLDER), label="Select Excel File 1")
file2 = gr.Dropdown(choices=get_excel_files(PDF_FOLDER), label="Select Excel File 2")
sheet = gr.Dropdown(choices=["GDP", "HICP", "RRE prices", "Unemployment", "CRE prices"], label="Select Sheet for File 1 and 2")
with gr.Column():
result = gr.Image(label="Comparison pLot")
def update_sheets(file):
return get_sheet_names(file)
b1 = gr.Button("Compare Data")
b2 = gr.Button("Extract text information")
with gr.Row():
with gr.Column():
sentiment_results_pdf1 = gr.HighlightedText(label="Sentiment Analysis - PDF 1")
country_1_dropdown = gr.Dropdown(label="Select Country from Excel File 1")
summarize_btn1_country = gr.Button("Summary for the selected country")
text_result_df1 = gr.Textbox(label="Sentence for excel file 1", lines=2)
summarize_btn1_country.click(fn=lambda country, theme: generate_text(stored_df1, country, theme),
inputs=[country_1_dropdown, sheet],
outputs=text_result_df1)
with gr.Column():
sentiment_results_pdf2 = gr.HighlightedText(label="Sentiment Analysis - PDF 2")
country_2_dropdown = gr.Dropdown(label="Select Country from Excel File 2")
summarize_btn2_country = gr.Button("Summary for the selected country")
text_result_df2 = gr.Textbox(label="Sentence for excel file 2", lines=2)
summarize_btn2_country.click(fn=lambda country, theme: generate_text(stored_df2, country, theme),
inputs=[country_2_dropdown, sheet],
outputs=text_result_df2)
# Button to extract text from PDFs and perform sentiment analysis
b1.click(fn=process_and_compare, inputs=[file1, sheet, file2, sheet], outputs=[result,country_1_dropdown, country_2_dropdown])
b2.click(fn=process_pdfs_and_analyze_sentiment, inputs=[file1, file2, sheet], outputs=[sentiment_results_pdf1, sentiment_results_pdf2])
demo.launch()
|