File size: 10,443 Bytes
08b59ae
 
 
 
 
67cafc1
08b59ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf1f436
08b59ae
 
 
 
 
 
 
 
 
 
 
 
bf1f436
 
 
08b59ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50d3706
 
 
08b59ae
 
 
 
 
 
 
b68ccdf
08b59ae
 
b68ccdf
 
 
08b59ae
 
b68ccdf
08b59ae
 
 
 
ecf4e44
 
67cafc1
08b59ae
a8dfcdd
 
67cafc1
 
 
 
bf1f436
67cafc1
 
 
 
bf1f436
 
 
 
 
 
 
67cafc1
bf1f436
 
 
 
 
 
 
 
67cafc1
bf1f436
67cafc1
bf1f436
 
 
 
 
 
 
 
 
50d3706
 
 
 
bf1f436
50d3706
 
bf1f436
 
50d3706
bf1f436
 
 
cacf550
67cafc1
 
 
 
bf1f436
67cafc1
 
bf1f436
67cafc1
bf1f436
 
 
 
 
 
 
67cafc1
bf1f436
 
 
 
 
 
 
 
67cafc1
bf1f436
 
 
 
 
 
 
 
 
67cafc1
bf1f436
50d3706
 
 
 
bf1f436
50d3706
 
bf1f436
 
50d3706
bf1f436
 
 
cacf550
08b59ae
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import gradio as gr
from transformers import pipeline
import spacy
import lib.read_pdf

# Initialize spaCy model
nlp = spacy.load('en_core_web_sm')
nlp.add_pipe('sentencizer')

def split_in_sentences(text):
    doc = nlp(text)
    return [str(sent).strip() for sent in doc.sents]

def make_spans(text, results):
    results_list = [res['label'] for res in results]
    facts_spans = list(zip(split_in_sentences(text), results_list))
    return facts_spans

# Initialize pipelines
summarizer = pipeline("summarization", model="human-centered-summarization/financial-summarization-pegasus")
fin_model = pipeline("sentiment-analysis", model='yiyanghkust/finbert-tone', tokenizer='yiyanghkust/finbert-tone')
fin_model_bis = pipeline("sentiment-analysis", model='ProsusAI/finbert', tokenizer='ProsusAI/finbert')

def summarize_text(text):
    resp = summarizer(text)
    return resp[0]['summary_text']

def text_to_sentiment(text):
    sentiment = fin_model(text)[0]["label"]
    return sentiment

def fin_ext(text):
    results = fin_model(split_in_sentences(text))
    return make_spans(text, results)
def fin_ext_bis(text):
    results = fin_model_bis(split_in_sentences(text))
    return make_spans(text, results)

def extract_and_summarize(pdf1, pdf2):
    if not pdf1 or not pdf2:
        return [], []

    pdf1_path = os.path.join(PDF_FOLDER, pdf1)
    pdf2_path = os.path.join(PDF_FOLDER, pdf2)

    # Extract and format paragraphs
    paragraphs_1 = lib.read_pdf.extract_and_format_paragraphs(pdf1_path)
    paragraphs_2 = lib.read_pdf.extract_and_format_paragraphs(pdf2_path)

    start_keyword = "Main risks to"
    end_keywords = ["4. Appendix", "Annex:", "4. Annex", "Detailed tables", "ACKNOWLEDGEMENTS", "STATISTICAL ANNEX", "PROSPECTS BY MEMBER STATES"]

    start_index1, end_index1 = lib.read_pdf.find_text_range(paragraphs_1, start_keyword, end_keywords)
    start_index2, end_index2 = lib.read_pdf.find_text_range(paragraphs_2, start_keyword, end_keywords)

    paragraphs_1 = lib.read_pdf.extract_relevant_text(paragraphs_1, start_index1, end_index1)
    paragraphs_2 = lib.read_pdf.extract_relevant_text(paragraphs_2, start_index2, end_index2)

    paragraphs_1 = lib.read_pdf.split_text_into_paragraphs(paragraphs_1, 0)
    paragraphs_2 = lib.read_pdf.split_text_into_paragraphs(paragraphs_2, 0)

    return paragraphs_1, paragraphs_2

# Gradio interface setup
PDF_FOLDER = "data"

def get_pdf_files(folder):
    return [f for f in os.listdir(folder) if f.endswith('.pdf')]

def show(name):
    return f"{name}"
    
stored_paragraphs_1 = []
stored_paragraphs_2 = []

with gr.Blocks() as demo:
    gr.Markdown("## Financial Report Paragraph Selection and Analysis")

    with gr.Row():
        # Upload PDFs
        with gr.Column():
            pdf1 = gr.Dropdown(choices=get_pdf_files(PDF_FOLDER), label="Select PDF 1")
            pdf2 = gr.Dropdown(choices=get_pdf_files(PDF_FOLDER), label="Select PDF 2")

        with gr.Column():
            b1 = gr.Button("Extract and Display Paragraphs")
            paragraph_1_dropdown = gr.Dropdown(label="Select Paragraph from PDF 1")
            paragraph_2_dropdown = gr.Dropdown(label="Select Paragraph from PDF 2")

            def update_paragraphs(pdf1, pdf2):
                global stored_paragraphs_1, stored_paragraphs_2
                stored_paragraphs_1, stored_paragraphs_2 = extract_and_summarize(pdf1, pdf2)
                updated_dropdown_1 = [f"Paragraph {i+1}: {p[:100]}..." for i, p in enumerate(stored_paragraphs_1)]
                updated_dropdown_2 = [f"Paragraph {i+1}: {p[:100]}..." for i, p in enumerate(stored_paragraphs_2)]
                return gr.update(choices=updated_dropdown_1), gr.update(choices=updated_dropdown_2)

            b1.click(fn=update_paragraphs, inputs=[pdf1, pdf2], outputs=[paragraph_1_dropdown, paragraph_2_dropdown])

    with gr.Row():
        # Process the selected paragraph from PDF 1
        with gr.Column():
            gr.Markdown("### PDF 1 Analysis")
            def process_paragraph_1_sum(paragraph):
                try:
                    paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
                    selected_paragraph = stored_paragraphs_1[paragraph_index]
                    summary = summarize_text(selected_paragraph)
                    return summary
                except (IndexError, ValueError):
                    return "Error"
            def process_paragraph_1_sent(paragraph):
                try:
                    paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
                    selected_paragraph = stored_paragraphs_1[paragraph_index]
                    sentiment = text_to_sentiment(selected_paragraph)

                    return sentiment
                except (IndexError, ValueError):
                    return "Error"
            def process_paragraph_1_sent_tone(paragraph):
                try:
                    paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
                    selected_paragraph = stored_paragraphs_1[paragraph_index]
                    fin_spans = fin_ext(selected_paragraph)
                    return fin_spans
                except (IndexError, ValueError):
                    return []
            def process_paragraph_1_sent_tone_bis(paragraph):
                try:
                    paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
                    selected_paragraph = stored_paragraphs_1[paragraph_index]
                    fin_spans = fin_ext_bis(selected_paragraph)
                    return fin_spans
                except (IndexError, ValueError):
                    return []
            selected_paragraph_1 = gr.Textbox(label="Selected Paragraph 1 Content", lines=4)
            selected_paragraph_1.change(show, paragraph_1_dropdown, selected_paragraph_1)
            summarize_btn1 = gr.Button("Summarize Text from PDF 1")
            summary_textbox_1 = gr.Textbox(label="Summary for PDF 1", lines=2)
            summarize_btn1.click(fn=lambda p: process_paragraph_1_sum(p), inputs=paragraph_1_dropdown, outputs=summary_textbox_1)
            sentiment_btn1 = gr.Button("Classify Financial Tone from PDF 1")
            sentiment_textbox_1 = gr.Textbox(label="Classification for PDF 1", lines=1)
            sentiment_btn1.click(fn=lambda p: process_paragraph_1_sent(p), inputs=paragraph_1_dropdown, outputs=sentiment_textbox_1)
            analyze_btn1 = gr.Button("Analyze Financial Tone on each sentence with yiyanghkust/finbert-tone")
            fin_spans_1 = gr.HighlightedText(label="Financial Tone Analysis for PDF 1")
            analyze_btn1.click(fn=lambda p: process_paragraph_1_sent_tone(p), inputs=paragraph_1_dropdown, outputs=fin_spans_1)
            analyze_btn1_ = gr.Button("Analyze Financial Tone on each sentence with ProsusAI/finbert")
            fin_spans_1_ = gr.HighlightedText(label="Financial Tone Analysis for PDF 1 bis")
            analyze_btn1_.click(fn=lambda p: process_paragraph_1_sent_tone_bis(p), inputs=paragraph_1_dropdown, outputs=fin_spans_1_)

        # Process the selected paragraph from PDF 2
        with gr.Column():
            gr.Markdown("### PDF 2 Analysis")
            def process_paragraph_2_sum(paragraph):
                try:
                    paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
                    selected_paragraph = stored_paragraphs_1[paragraph_index]
                    summary = summarize_text(selected_paragraph)
                    return summary
                except (IndexError, ValueError):
                    return "Error"
            def process_paragraph_2_sent(paragraph):
                try:
                    paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
                    selected_paragraph = stored_paragraphs_1[paragraph_index]
                    sentiment = text_to_sentiment(selected_paragraph)

                    return sentiment
                except (IndexError, ValueError):
                    return "Error"
            def process_paragraph_2_sent_tone(paragraph):
                try:
                    paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
                    selected_paragraph = stored_paragraphs_1[paragraph_index]
                    fin_spans = fin_ext(selected_paragraph)
                    return fin_spans
                except (IndexError, ValueError):
                    return []
            def process_paragraph_2_sent_tone_bis(paragraph):
                try:
                    paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
                    selected_paragraph = stored_paragraphs_2[paragraph_index]
                    fin_spans = fin_ext_bis(selected_paragraph)
                    return fin_spans
                except (IndexError, ValueError):
                    return []
            selected_paragraph_2 = gr.Textbox(label="Selected Paragraph 2 Content", lines=4)
            selected_paragraph_2.change(show, paragraph_2_dropdown, selected_paragraph_2)
            summarize_btn2 = gr.Button("Summarize Text from PDF 2")
            summary_textbox_2 = gr.Textbox(label="Summary for PDF 2", lines=2)
            summarize_btn2.click(fn=lambda p: process_paragraph_2_sum(p), inputs=paragraph_2_dropdown, outputs=summary_textbox_2)
            sentiment_btn2 = gr.Button("Classify Financial Tone from PDF 2")
            sentiment_textbox_2 = gr.Textbox(label="Classification for PDF 2", lines=1)
            sentiment_btn2.click(fn=lambda p: process_paragraph_2_sent(p), inputs=paragraph_2_dropdown, outputs=sentiment_textbox_2)
            analyze_btn2 = gr.Button("Analyze Financial Tone on each sentence with yiyanghkust/finbert-tone")
            fin_spans_2 = gr.HighlightedText(label="Financial Tone Analysis for PDF 2")
            analyze_btn2.click(fn=lambda p: process_paragraph_2_sent_tone(p), inputs=paragraph_2_dropdown, outputs=fin_spans_2)
            analyze_btn2_ = gr.Button("Analyze Financial Tone on each sentence with ProsusAI/finbert")
            fin_spans_2_ = gr.HighlightedText(label="Financial Tone Analysis for PDF 2 bis")
            analyze_btn2_.click(fn=lambda p: process_paragraph_2_sent_tone_bis(p), inputs=paragraph_2_dropdown, outputs=fin_spans_2_)

demo.launch()