File size: 7,272 Bytes
08b59ae
 
 
 
 
67cafc1
08b59ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50d3706
 
 
08b59ae
 
 
 
 
 
 
b68ccdf
08b59ae
 
b68ccdf
 
 
08b59ae
 
b68ccdf
08b59ae
 
 
 
ecf4e44
 
67cafc1
08b59ae
a8dfcdd
 
67cafc1
 
 
 
 
 
 
 
 
 
 
 
 
 
50d3706
 
 
 
cf6a9ee
50d3706
 
cf6a9ee
50d3706
 
cf6a9ee
67cafc1
 
 
 
 
 
 
 
 
 
 
 
 
 
50d3706
 
 
 
cf6a9ee
50d3706
 
cf6a9ee
50d3706
 
cf6a9ee
08b59ae
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import gradio as gr
from transformers import pipeline
import spacy
import lib.read_pdf

# Initialize spaCy model
nlp = spacy.load('en_core_web_sm')
nlp.add_pipe('sentencizer')

def split_in_sentences(text):
    doc = nlp(text)
    return [str(sent).strip() for sent in doc.sents]

def make_spans(text, results):
    results_list = [res['label'] for res in results]
    facts_spans = list(zip(split_in_sentences(text), results_list))
    return facts_spans

# Initialize pipelines
summarizer = pipeline("summarization", model="human-centered-summarization/financial-summarization-pegasus")
fin_model = pipeline("sentiment-analysis", model='yiyanghkust/finbert-tone', tokenizer='yiyanghkust/finbert-tone')

def summarize_text(text):
    resp = summarizer(text)
    return resp[0]['summary_text']

def text_to_sentiment(text):
    sentiment = fin_model(text)[0]["label"]
    return sentiment

def fin_ext(text):
    results = fin_model(split_in_sentences(text))
    return make_spans(text, results)

def extract_and_summarize(pdf1, pdf2):
    if not pdf1 or not pdf2:
        return [], []

    pdf1_path = os.path.join(PDF_FOLDER, pdf1)
    pdf2_path = os.path.join(PDF_FOLDER, pdf2)

    # Extract and format paragraphs
    paragraphs_1 = lib.read_pdf.extract_and_format_paragraphs(pdf1_path)
    paragraphs_2 = lib.read_pdf.extract_and_format_paragraphs(pdf2_path)

    start_keyword = "Main risks to"
    end_keywords = ["4. Appendix", "Annex:", "4. Annex", "Detailed tables", "ACKNOWLEDGEMENTS", "STATISTICAL ANNEX", "PROSPECTS BY MEMBER STATES"]

    start_index1, end_index1 = lib.read_pdf.find_text_range(paragraphs_1, start_keyword, end_keywords)
    start_index2, end_index2 = lib.read_pdf.find_text_range(paragraphs_2, start_keyword, end_keywords)

    paragraphs_1 = lib.read_pdf.extract_relevant_text(paragraphs_1, start_index1, end_index1)
    paragraphs_2 = lib.read_pdf.extract_relevant_text(paragraphs_2, start_index2, end_index2)

    paragraphs_1 = lib.read_pdf.split_text_into_paragraphs(paragraphs_1, 0)
    paragraphs_2 = lib.read_pdf.split_text_into_paragraphs(paragraphs_2, 0)

    return paragraphs_1, paragraphs_2

# Gradio interface setup
PDF_FOLDER = "data"

def get_pdf_files(folder):
    return [f for f in os.listdir(folder) if f.endswith('.pdf')]

def show(name):
    return f"{name}"
    
stored_paragraphs_1 = []
stored_paragraphs_2 = []

with gr.Blocks() as demo:
    gr.Markdown("## Financial Report Paragraph Selection and Analysis")

    with gr.Row():
        # Upload PDFs
        with gr.Column():
            pdf1 = gr.Dropdown(choices=get_pdf_files(PDF_FOLDER), label="Select PDF 1")
            pdf2 = gr.Dropdown(choices=get_pdf_files(PDF_FOLDER), label="Select PDF 2")

        with gr.Column():
            b1 = gr.Button("Extract and Display Paragraphs")
            paragraph_1_dropdown = gr.Dropdown(label="Select Paragraph from PDF 1")
            paragraph_2_dropdown = gr.Dropdown(label="Select Paragraph from PDF 2")

            def update_paragraphs(pdf1, pdf2):
                global stored_paragraphs_1, stored_paragraphs_2
                stored_paragraphs_1, stored_paragraphs_2 = extract_and_summarize(pdf1, pdf2)
                updated_dropdown_1 = [f"Paragraph {i+1}: {p[:100]}..." for i, p in enumerate(stored_paragraphs_1)]
                updated_dropdown_2 = [f"Paragraph {i+1}: {p[:100]}..." for i, p in enumerate(stored_paragraphs_2)]
                return gr.update(choices=updated_dropdown_1), gr.update(choices=updated_dropdown_2)

            b1.click(fn=update_paragraphs, inputs=[pdf1, pdf2], outputs=[paragraph_1_dropdown, paragraph_2_dropdown])

    with gr.Row():
        # Process the selected paragraph from PDF 1
        with gr.Column():
            gr.Markdown("### PDF 1 Analysis")
            def process_paragraph_1(paragraph):
                try:
                    paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
                    selected_paragraph = stored_paragraphs_1[paragraph_index]
                    summary = summarize_text(selected_paragraph)
                    sentiment = text_to_sentiment(selected_paragraph)
                    fin_spans = fin_ext(selected_paragraph)
                    return selected_paragraph, summary, sentiment, fin_spans
                except (IndexError, ValueError):
                    return "Invalid selection", "Error", "Error", []
            selected_paragraph_1 = gr.Textbox(label="Selected Paragraph 1 Content", lines=4)
            selected_paragraph_1.change(show, paragraph_1_dropdown, selected_paragraph_1)
            summarize_btn1 = gr.Button("Summarize Text from PDF 1")
            summary_textbox_1 = gr.Textbox(label="Summary for PDF 1", lines=2)
            summarize_btn1.click(fn=lambda p: process_paragraph_1(p)[1], inputs=paragraph_1_dropdown, outputs=summary_textbox_1)
            sentiment_btn1 = gr.Button("Classify Financial Tone from PDF 1")
            sentiment_textbox_1 = gr.Textbox(label="Classification for PDF 1", lines=1)
            sentiment_btn1.click(fn=lambda p: process_paragraph_1(p)[2], inputs=paragraph_1_dropdown, outputs=sentiment_textbox_1)
            analyze_btn1 = gr.Button("Analyze Financial Tone on each sentence")
            fin_spans_1 = gr.HighlightedText(label="Financial Tone Analysis for PDF 1")
            analyze_btn1.click(fn=lambda p: process_paragraph_1(p)[3], inputs=paragraph_1_dropdown, outputs=fin_spans_1)

        # Process the selected paragraph from PDF 2
        with gr.Column():
            gr.Markdown("### PDF 2 Analysis")
            def process_paragraph_2(paragraph):
                try:
                    paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
                    selected_paragraph = stored_paragraphs_2[paragraph_index]
                    summary = summarize_text(selected_paragraph)
                    sentiment = text_to_sentiment(selected_paragraph)
                    fin_spans = fin_ext(selected_paragraph)
                    return selected_paragraph, summary, sentiment, fin_spans
                except (IndexError, ValueError):
                    return "Invalid selection", "Error", "Error", []
            selected_paragraph_2 = gr.Textbox(label="Selected Paragraph 2 Content", lines=4)
            selected_paragraph_2.change(show, paragraph_2_dropdown, selected_paragraph_2)
            summarize_btn2 = gr.Button("Summarize Text from PDF 2")
            summary_textbox_2 = gr.Textbox(label="Summary for PDF 2", lines=2)
            summarize_btn2.click(fn=lambda p: process_paragraph_2(p)[1], inputs=paragraph_2_dropdown, outputs=summary_textbox_2)
            sentiment_btn2 = gr.Button("Classify Financial Tone from PDF 2")
            sentiment_textbox_2 = gr.Textbox(label="Classification for PDF 2", lines=1)
            sentiment_btn2.click(fn=lambda p: process_paragraph_2(p)[2], inputs=paragraph_2_dropdown, outputs=sentiment_textbox_2)
            analyze_btn2 = gr.Button("Analyze Financial Tone on each sentence")
            fin_spans_2 = gr.HighlightedText(label="Financial Tone Analysis for PDF 2")
            analyze_btn2.click(fn=lambda p: process_paragraph_2(p)[3], inputs=paragraph_2_dropdown, outputs=fin_spans_2)

demo.launch()