File size: 1,915 Bytes
e724b8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np

# Load the pre-trained sentence transformer model
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')

# Get sentence embeddings for a single paragraph
def get_single_sentence_embedding(paragraph):
    """Obtain embeddings for a single paragraph using a sentence transformer."""
    embedding = model.encode([paragraph], convert_to_tensor=True)
    return embedding

# Get sentence embeddings for a list of paragraphs
def get_sentence_embeddings(paragraphs):
    """Obtain embeddings for a list of paragraphs using a sentence transformer."""
    embeddings = model.encode(paragraphs, convert_to_tensor=True)
    return embeddings

# Compute similarity matrices over embeddings
def compute_similarity(embeddings1, embeddings2):
    """Compute pairwise cosine similarity between two sets of embeddings."""
    return cosine_similarity(embeddings1.cpu().numpy(), embeddings2.cpu().numpy())

# Compare a single selected paragraph with a list of stored paragraphs
def compare_selected_paragraph(paragraph, stored_paragraphs):
    """Compare the selected paragraph with stored paragraphs."""
    # Get embedding for the selected paragraph
    embedding1 = get_single_sentence_embedding(paragraph)
    
    # Get embeddings for the stored paragraphs
    embeddings2 = get_sentence_embeddings(stored_paragraphs)
    
    # Compute similarity
    similarity_matrix = compute_similarity(embedding1, embeddings2)
    
    # Find the most similar paragraph
    most_similar_index = np.argmax(similarity_matrix[0])
    most_similar_paragraph = stored_paragraphs[most_similar_index]
    similarity_score = similarity_matrix[0][most_similar_index]
    
    return f"Most similar paragraph {most_similar_index + 1}: {most_similar_paragraph}\nSimilarity score: {similarity_score:.2f}"