Spaces:
Running
Running
import torch | |
from transformers.cache_utils import DynamicCache | |
def get_tokenized_chat(tokenizer, prompt, doc): | |
messages = [ | |
{ | |
"role": "user", | |
"content": f"{prompt}\n\n{doc}", | |
}, | |
] | |
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")[0] | |
return tokenized_chat | |
def tokenize_doc_in_progress(tokenizer, doc_in_progress): | |
if len(doc_in_progress) == 0: | |
# Some tokenizers give tensors of the wrong dtype if the input is empty | |
return torch.empty(0, dtype=torch.int64) | |
doc_in_progress_ids = tokenizer( | |
doc_in_progress, return_tensors='pt')['input_ids'][0] | |
# strip the first token, the "beginning of document" token | |
# TODO: make this robust to switching models | |
# since some models will use different special tokens | |
doc_in_progress_ids = doc_in_progress_ids[1:] | |
return doc_in_progress_ids | |
def get_highlights_inner(model, tokenizer, doc, prompt, updated_doc, k): | |
tokenized_chat = get_tokenized_chat(tokenizer, prompt, doc) | |
assert len(tokenized_chat.shape) == 1 | |
if updated_doc is None or len(updated_doc.strip()) == 0: | |
updated_doc = doc | |
updated_doc_ids = tokenize_doc_in_progress(tokenizer, updated_doc) | |
joined_ids = torch.cat([tokenized_chat, updated_doc_ids]) | |
# Compute the next-token logits for the entire document | |
with torch.no_grad(): | |
logits = model(joined_ids[None].to(model.device)).logits[0].cpu() | |
highlights = [] | |
length_so_far = 0 | |
for idx in range(len(tokenized_chat), len(joined_ids)): | |
probs = logits[idx - 1].softmax(dim=-1) | |
token_id = joined_ids[idx] | |
token = tokenizer.decode(token_id) | |
token_loss = -probs[token_id].log().item() | |
topk_tokens = probs.topk(k).indices.cpu().numpy().tolist() | |
topk_tokens_decoded = tokenizer.batch_decode(topk_tokens, skip_special_tokens=True) | |
highlights.append(dict( | |
start=length_so_far, | |
end=length_so_far + len(token), | |
token=token, | |
token_loss=token_loss, | |
most_likely_token=topk_tokens_decoded[0], | |
topk_tokens=topk_tokens_decoded, | |
)) | |
length_so_far += len(token) | |
return highlights | |
def get_lookahead_sequences(model, tokenizer, hypotheses, n_branch_tokens, device): | |
""" | |
For each of the n_branch_tokens next tokens, generate most-likely next tokens and append back on. | |
""" | |
assert len(hypotheses.shape) == 2 | |
assert hypotheses.shape[0] == 1 | |
n_tokens_so_far = hypotheses.shape[1] | |
past_key_values = DynamicCache() | |
with torch.no_grad(): | |
model_outs_onestep = model(hypotheses, output_hidden_states=True, past_key_values=past_key_values) | |
branch_tokens = model_outs_onestep.logits[0, -1].topk(n_branch_tokens).indices | |
# split the cache into n_branch_tokens reps. We pretend we're doing a "Beam search"... | |
past_key_values.reorder_cache(torch.zeros((n_branch_tokens,), dtype=torch.long, device=device)) | |
# Now call the model again, passing the kv cache, so we can continue generating. | |
# Each of the n_branch_tokens next tokens will be considered as one sequence in a "batch". | |
next_tokens_as_batch = branch_tokens.unsqueeze(1) | |
assert next_tokens_as_batch.shape == (n_branch_tokens, 1) | |
position_id_for_final_token = n_tokens_so_far | |
cache_position = torch.full((1,), position_id_for_final_token, dtype=int, device=device) | |
with torch.no_grad(): | |
model_outs = model( | |
next_tokens_as_batch, | |
past_key_values=past_key_values, | |
output_hidden_states=True, | |
use_cache=True, | |
# the cache surprisingly doesn't know the position of the last token | |
cache_position=cache_position | |
) | |
# Grab the single most likely token from each of the n_branch_tokens sequences | |
next_token_logits = model_outs.logits[:, -1] | |
vocab_size = model.config.vocab_size | |
assert next_token_logits.shape == (n_branch_tokens, vocab_size), f"{next_token_logits.shape=}, {n_branch_tokens=}, {vocab_size=}" | |
most_likely_token_ids = next_token_logits.argmax(dim=-1) | |
# Stick them at the end of the branch tokens. | |
assert most_likely_token_ids.shape == (n_branch_tokens,) | |
lookahead_sequences = torch.cat([ | |
branch_tokens.unsqueeze(1), | |
most_likely_token_ids.unsqueeze(1) | |
], dim=1) | |
assert lookahead_sequences.shape == (n_branch_tokens, 2) | |
return lookahead_sequences, next_token_logits | |
def get_next_token_predictions_inner( | |
model, tokenizer, original_doc, prompt, doc_in_progress, k): | |
tokenized_chat = get_tokenized_chat(tokenizer, prompt, original_doc) | |
doc_in_progress_ids = tokenize_doc_in_progress(tokenizer, doc_in_progress) | |
device = model.device | |
joined_ids = torch.cat([tokenized_chat, doc_in_progress_ids]) | |
hypotheses = joined_ids[None].to(model.device) | |
# Alternative approach: chat templates | |
tokenized_chat = tokenizer.apply_chat_template([ | |
{"role": "user", "content": f"{prompt}\n\n{original_doc}"}, | |
{"role": "assistant", "content": doc_in_progress} | |
], tokenize=True, return_tensors="pt", continue_final_message=True).to(model.device) | |
# Compare them | |
if tokenized_chat.shape == hypotheses.shape and torch.all(tokenized_chat == hypotheses): | |
print("Tokenized chat and hypotheses match") | |
else: | |
print("FAIL: Tokenized chat and hypotheses do not match!") | |
print(f"{tokenized_chat=}") | |
print(f"{hypotheses=}") | |
lookahead_sequences, next_token_logits = get_lookahead_sequences( | |
model, tokenizer, hypotheses, k, device) | |
decoded_next_tokens = tokenizer.batch_decode(lookahead_sequences, skip_special_tokens=True) | |
return decoded_next_tokens, next_token_logits | |
def get_next_token_predictions_slow( | |
model, tokenizer, original_doc, prompt, doc_in_progress, k): | |
tokenized_chat = get_tokenized_chat(tokenizer, prompt, original_doc) | |
doc_in_progress_ids = tokenize_doc_in_progress(tokenizer, doc_in_progress) | |
joined_ids = torch.cat([tokenized_chat, doc_in_progress_ids]) | |
hypotheses = joined_ids[None].to(model.device) | |
# For each of the k next tokens, generate most-likely next tokens and append back on until we | |
# reach a token with a space | |
with torch.no_grad(): | |
model_outs = model(hypotheses, output_hidden_states=True) | |
next_token_logits = model_outs.logits[0, -1] | |
branch_tokens = next_token_logits.topk(k).indices | |
# Slow mode: concat the branch tokens to the hypotheses. | |
# Then call the model on the full sequence. | |
# This is slow because the beginning of the sequence is re-processed each time. | |
hypotheses_with_next_tokens = torch.cat([ | |
torch.repeat_interleave(hypotheses, k, dim=0), | |
branch_tokens.unsqueeze(1) | |
], dim=1) | |
assert hypotheses_with_next_tokens.shape == (k, len(joined_ids) + 1) | |
with torch.no_grad(): | |
model_outs = model(hypotheses_with_next_tokens) | |
# Grab the single most likely token from each of the k sequences | |
next_token_logits = model_outs.logits[:, -1] | |
vocab_size = model.config.vocab_size | |
assert next_token_logits.shape == (k, vocab_size), f"{next_token_logits.shape=}, {k=}, {vocab_size=}" | |
most_likely_token_ids = next_token_logits.argmax(dim=-1) | |
# Stick them at the end of the branch tokens. | |
assert most_likely_token_ids.shape == (k,) | |
lookahead_sequences = torch.cat([ | |
branch_tokens.unsqueeze(1), | |
most_likely_token_ids.unsqueeze(1) | |
], dim=1) | |
assert lookahead_sequences.shape == (k, 2) | |
decoded_next_tokens = tokenizer.batch_decode(lookahead_sequences, skip_special_tokens=True) | |
return decoded_next_tokens, next_token_logits | |
def continue_messages_inner(model, tokenizer, messages, n_branch_tokens, n_future_tokens): | |
# Note: we're ignoring n_future_tokens right now since the old implementation was buggy. | |
device = model.device | |
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt", continue_final_message=True).to(model.device) | |
print(tokenizer.batch_decode(tokenized_chat, skip_special_tokens=False)) | |
lookahead_sequences, next_token_logits = get_lookahead_sequences( | |
model, tokenizer, tokenized_chat, n_branch_tokens, device) | |
generated_docs = tokenizer.batch_decode(lookahead_sequences, skip_special_tokens=True) | |
return generated_docs |