writing-prototypes / custom_llm_inference.py
kcarnold's picture
Looks like I never committed these improvements to the backend.
bfee54e
raw
history blame
8.52 kB
import torch
from transformers.cache_utils import DynamicCache
def get_tokenized_chat(tokenizer, prompt, doc):
messages = [
{
"role": "user",
"content": f"{prompt}\n\n{doc}",
},
]
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")[0]
return tokenized_chat
def tokenize_doc_in_progress(tokenizer, doc_in_progress):
if len(doc_in_progress) == 0:
# Some tokenizers give tensors of the wrong dtype if the input is empty
return torch.empty(0, dtype=torch.int64)
doc_in_progress_ids = tokenizer(
doc_in_progress, return_tensors='pt')['input_ids'][0]
# strip the first token, the "beginning of document" token
# TODO: make this robust to switching models
# since some models will use different special tokens
doc_in_progress_ids = doc_in_progress_ids[1:]
return doc_in_progress_ids
def get_highlights_inner(model, tokenizer, doc, prompt, updated_doc, k):
tokenized_chat = get_tokenized_chat(tokenizer, prompt, doc)
assert len(tokenized_chat.shape) == 1
if updated_doc is None or len(updated_doc.strip()) == 0:
updated_doc = doc
updated_doc_ids = tokenize_doc_in_progress(tokenizer, updated_doc)
joined_ids = torch.cat([tokenized_chat, updated_doc_ids])
# Compute the next-token logits for the entire document
with torch.no_grad():
logits = model(joined_ids[None].to(model.device)).logits[0].cpu()
highlights = []
length_so_far = 0
for idx in range(len(tokenized_chat), len(joined_ids)):
probs = logits[idx - 1].softmax(dim=-1)
token_id = joined_ids[idx]
token = tokenizer.decode(token_id)
token_loss = -probs[token_id].log().item()
topk_tokens = probs.topk(k).indices.cpu().numpy().tolist()
topk_tokens_decoded = tokenizer.batch_decode(topk_tokens, skip_special_tokens=True)
highlights.append(dict(
start=length_so_far,
end=length_so_far + len(token),
token=token,
token_loss=token_loss,
most_likely_token=topk_tokens_decoded[0],
topk_tokens=topk_tokens_decoded,
))
length_so_far += len(token)
return highlights
def get_lookahead_sequences(model, tokenizer, hypotheses, n_branch_tokens, device):
"""
For each of the n_branch_tokens next tokens, generate most-likely next tokens and append back on.
"""
assert len(hypotheses.shape) == 2
assert hypotheses.shape[0] == 1
n_tokens_so_far = hypotheses.shape[1]
past_key_values = DynamicCache()
with torch.no_grad():
model_outs_onestep = model(hypotheses, output_hidden_states=True, past_key_values=past_key_values)
branch_tokens = model_outs_onestep.logits[0, -1].topk(n_branch_tokens).indices
# split the cache into n_branch_tokens reps. We pretend we're doing a "Beam search"...
past_key_values.reorder_cache(torch.zeros((n_branch_tokens,), dtype=torch.long, device=device))
# Now call the model again, passing the kv cache, so we can continue generating.
# Each of the n_branch_tokens next tokens will be considered as one sequence in a "batch".
next_tokens_as_batch = branch_tokens.unsqueeze(1)
assert next_tokens_as_batch.shape == (n_branch_tokens, 1)
position_id_for_final_token = n_tokens_so_far
cache_position = torch.full((1,), position_id_for_final_token, dtype=int, device=device)
with torch.no_grad():
model_outs = model(
next_tokens_as_batch,
past_key_values=past_key_values,
output_hidden_states=True,
use_cache=True,
# the cache surprisingly doesn't know the position of the last token
cache_position=cache_position
)
# Grab the single most likely token from each of the n_branch_tokens sequences
next_token_logits = model_outs.logits[:, -1]
vocab_size = model.config.vocab_size
assert next_token_logits.shape == (n_branch_tokens, vocab_size), f"{next_token_logits.shape=}, {n_branch_tokens=}, {vocab_size=}"
most_likely_token_ids = next_token_logits.argmax(dim=-1)
# Stick them at the end of the branch tokens.
assert most_likely_token_ids.shape == (n_branch_tokens,)
lookahead_sequences = torch.cat([
branch_tokens.unsqueeze(1),
most_likely_token_ids.unsqueeze(1)
], dim=1)
assert lookahead_sequences.shape == (n_branch_tokens, 2)
return lookahead_sequences, next_token_logits
def get_next_token_predictions_inner(
model, tokenizer, original_doc, prompt, doc_in_progress, k):
tokenized_chat = get_tokenized_chat(tokenizer, prompt, original_doc)
doc_in_progress_ids = tokenize_doc_in_progress(tokenizer, doc_in_progress)
device = model.device
joined_ids = torch.cat([tokenized_chat, doc_in_progress_ids])
hypotheses = joined_ids[None].to(model.device)
# Alternative approach: chat templates
tokenized_chat = tokenizer.apply_chat_template([
{"role": "user", "content": f"{prompt}\n\n{original_doc}"},
{"role": "assistant", "content": doc_in_progress}
], tokenize=True, return_tensors="pt", continue_final_message=True).to(model.device)
# Compare them
if tokenized_chat.shape == hypotheses.shape and torch.all(tokenized_chat == hypotheses):
print("Tokenized chat and hypotheses match")
else:
print("FAIL: Tokenized chat and hypotheses do not match!")
print(f"{tokenized_chat=}")
print(f"{hypotheses=}")
lookahead_sequences, next_token_logits = get_lookahead_sequences(
model, tokenizer, hypotheses, k, device)
decoded_next_tokens = tokenizer.batch_decode(lookahead_sequences, skip_special_tokens=True)
return decoded_next_tokens, next_token_logits
def get_next_token_predictions_slow(
model, tokenizer, original_doc, prompt, doc_in_progress, k):
tokenized_chat = get_tokenized_chat(tokenizer, prompt, original_doc)
doc_in_progress_ids = tokenize_doc_in_progress(tokenizer, doc_in_progress)
joined_ids = torch.cat([tokenized_chat, doc_in_progress_ids])
hypotheses = joined_ids[None].to(model.device)
# For each of the k next tokens, generate most-likely next tokens and append back on until we
# reach a token with a space
with torch.no_grad():
model_outs = model(hypotheses, output_hidden_states=True)
next_token_logits = model_outs.logits[0, -1]
branch_tokens = next_token_logits.topk(k).indices
# Slow mode: concat the branch tokens to the hypotheses.
# Then call the model on the full sequence.
# This is slow because the beginning of the sequence is re-processed each time.
hypotheses_with_next_tokens = torch.cat([
torch.repeat_interleave(hypotheses, k, dim=0),
branch_tokens.unsqueeze(1)
], dim=1)
assert hypotheses_with_next_tokens.shape == (k, len(joined_ids) + 1)
with torch.no_grad():
model_outs = model(hypotheses_with_next_tokens)
# Grab the single most likely token from each of the k sequences
next_token_logits = model_outs.logits[:, -1]
vocab_size = model.config.vocab_size
assert next_token_logits.shape == (k, vocab_size), f"{next_token_logits.shape=}, {k=}, {vocab_size=}"
most_likely_token_ids = next_token_logits.argmax(dim=-1)
# Stick them at the end of the branch tokens.
assert most_likely_token_ids.shape == (k,)
lookahead_sequences = torch.cat([
branch_tokens.unsqueeze(1),
most_likely_token_ids.unsqueeze(1)
], dim=1)
assert lookahead_sequences.shape == (k, 2)
decoded_next_tokens = tokenizer.batch_decode(lookahead_sequences, skip_special_tokens=True)
return decoded_next_tokens, next_token_logits
def continue_messages_inner(model, tokenizer, messages, n_branch_tokens, n_future_tokens):
# Note: we're ignoring n_future_tokens right now since the old implementation was buggy.
device = model.device
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt", continue_final_message=True).to(model.device)
print(tokenizer.batch_decode(tokenized_chat, skip_special_tokens=False))
lookahead_sequences, next_token_logits = get_lookahead_sequences(
model, tokenizer, tokenized_chat, n_branch_tokens, device)
generated_docs = tokenizer.batch_decode(lookahead_sequences, skip_special_tokens=True)
return generated_docs