Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import InferenceClient | |
# Initialize the Hugging Face Inference Client | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
def respond(message, history, system_message, max_tokens, temperature, top_p): | |
""" | |
Handles user input and generates a response using the Hugging Face model. | |
""" | |
try: | |
# Construct the conversation context | |
messages = [{"role": "system", "content": system_message}] | |
for user_msg, assistant_msg in history: | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if assistant_msg: | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
messages.append({"role": "user", "content": message}) | |
# Generate the response | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
stream=True | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
except Exception as e: | |
yield f"Error: {str(e)}" | |
# Create the Gradio interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a helpful assistant.", label="System Message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, label="Max Tokens"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p (Nucleus Sampling)"), | |
] | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
demo.launch() |