Spaces:
Running
Running
File size: 6,979 Bytes
e169f05 b9eedf1 e169f05 b9eedf1 e169f05 b9eedf1 e169f05 b9eedf1 e169f05 b9eedf1 e169f05 b9eedf1 e169f05 491b49d e169f05 b9eedf1 e169f05 b9eedf1 e169f05 b9eedf1 e169f05 b9eedf1 e169f05 b9eedf1 e169f05 b9eedf1 e169f05 d89cb85 e169f05 d89cb85 e169f05 b9eedf1 e169f05 b9eedf1 e169f05 b9eedf1 e169f05 b9eedf1 e169f05 b9eedf1 e169f05 d89cb85 e169f05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
# coding=utf-8
import json
import os
from dataclasses import asdict, dataclass
from pathlib import Path
from typing import Any, Dict, List, Optional, Type, TypeVar, Union
from huggingface_hub import ModelHubMixin, hf_hub_download
# Generic variable that is either ModelHubMixin or a subclass thereof
T = TypeVar("T", bound="ModelHubMixin")
TEMPLATE_FILENAME = "dialogue_template.json"
IGNORE_INDEX = -100
@dataclass
class DialogueTemplate(ModelHubMixin):
"""Converts all turns of a dialogue between a user and assistant to a standardized format."""
system: str
messages: List[Dict[str, str]] = None
system_token: str = "<|system|>"
user_token: str = "<|user|>"
assistant_token: str = "<|assistant|>"
end_token: str = "<|end|>"
def __post_init__(self):
"""Ensure that messages is never None."""
if self.messages is None:
self.messages = []
def get_training_prompt(self) -> str:
if len(self.messages) == 0:
raise ValueError("Dialogue template must have at least one message.")
prompt = self.system_token + "\n" + self.system + self.end_token + "\n"
for message in self.messages:
if message["role"] == "user":
prompt += self.user_token + "\n" + message["content"] + self.end_token + "\n"
else:
prompt += self.assistant_token + "\n" + message["content"] + self.end_token + "\n"
return prompt
def get_inference_prompt(self) -> str:
if len(self.messages) == 0:
raise ValueError("Dialogue template must have at least one message.")
prompt = self.system_token + "\n" + self.system + self.end_token + "\n"
for message in self.messages:
if message["role"] == "user":
prompt += self.user_token + "\n" + message["content"] + self.end_token + "\n"
else:
prompt += self.assistant_token + "\n" + message["content"] + self.end_token + "\n"
prompt += self.assistant_token + "\n"
return prompt
def get_dialogue(self):
if len(self.messages) == 0:
raise ValueError("Dialogue template must have at least one message.")
prompt = ""
for message in self.messages:
if message["role"] == "user":
prompt += "\n\nHuman: " + message["content"]
else:
prompt += "\n\nAssistant: " + message["content"]
return prompt
def get_special_tokens(self) -> List[str]:
return [self.system_token, self.user_token, self.assistant_token, self.end_token]
def copy(self):
return DialogueTemplate(
system=self.system,
messages=self.messages,
system_token=self.system_token,
user_token=self.user_token,
assistant_token=self.assistant_token,
end_token=self.end_token,
)
def to_dict(self) -> Dict[str, Any]:
return {k: v for k, v in asdict(self).items()}
@classmethod
def from_dict(cls, data):
return DialogueTemplate(
system=data.get("system", ""),
messages=data.get("messages", None),
system_token=data.get("system_token", "<|system|>"),
user_token=data.get("user_token", "<|user|>"),
assistant_token=data.get("assistant_token", "<|assistant|>"),
end_token=data.get("end_token", "<|end|>"),
)
def _save_pretrained(self, save_directory: Union[str, Path]) -> None:
save_directory = Path(save_directory)
save_directory.mkdir(exist_ok=True)
with open(save_directory / "dialogue_template.json", "w") as f:
json.dump(self.to_dict(), f, indent=2)
@classmethod
def _from_pretrained(
cls: Type[T],
*,
model_id: str,
revision: Optional[str],
cache_dir: Optional[Union[str, Path]],
force_download: bool,
proxies: Optional[Dict],
resume_download: bool,
local_files_only: bool,
token: Optional[Union[str, bool]],
**model_kwargs,
) -> T:
"""Loads the dialogue template from a local directory or the Huggingface Hub."""
if os.path.isdir(model_id):
print("Loading dialogue template from local directory")
template_file = os.path.join(model_id, TEMPLATE_FILENAME)
else:
template_file = hf_hub_download(
repo_id=model_id,
filename=TEMPLATE_FILENAME,
revision=revision or "main",
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
token=token,
local_files_only=local_files_only,
)
with open(template_file, "r") as f:
data = json.load(f)
return cls.from_dict(data=data)
# Default template with programming specialization
default_template = DialogueTemplate(
system="Below is a dialogue between a human user and an AI assistant. The assistant specializes in computer programming and coding, and will assist with coding questions, debugging, code optimization, algorithm design, and more. The assistant is knowledgeable in various programming languages like Python, JavaScript, and C++.",
)
# Supporting other templates
no_system_template = DialogueTemplate(system="")
alpaca_template = DialogueTemplate(
system="Below is an instruction that describes a task. Write a response that appropriately completes the request.",
user_token="### Instruction:",
assistant_token="### Response:",
)
SUPPORTED_DIALOGUE_TEMPLATES = {
"default": default_template,
"no_system": no_system_template,
"alpaca": alpaca_template,
}
def get_dialogue_template(template: str) -> DialogueTemplate:
if template not in SUPPORTED_DIALOGUE_TEMPLATES:
raise ValueError(f"Template {template} is not supported!")
return SUPPORTED_DIALOGUE_TEMPLATES[template].copy()
def prepare_dialogue(example, dialogue_template, is_train=True):
if "messages" in example and example["messages"] is not None:
dialogue_template.messages = example["messages"]
elif "prompt" in example and "completion" in example:
dialogue_template.messages = [
{"role": "user", "content": example["prompt"]},
{"role": "assistant", "content": example["completion"]},
]
elif "prompt" in example:
dialogue_template.messages = [{"role": "user", "content": example["prompt"]}]
else:
raise ValueError(
f"Could not format example as dialogue! Require either `messages` or `[prompt, completion]` or `[prompt]` keys but found {list(example.keys())}."
)
if is_train:
example["text"] = dialogue_template.get_training_prompt()
else:
example["text"] = dialogue_template.get_inference_prompt()
return example
|