File size: 6,979 Bytes
e169f05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9eedf1
e169f05
 
 
 
 
 
 
 
b9eedf1
 
e169f05
b9eedf1
 
 
 
e169f05
b9eedf1
e169f05
 
 
 
 
 
 
 
b9eedf1
e169f05
b9eedf1
e169f05
 
 
 
 
491b49d
e169f05
 
 
b9eedf1
e169f05
b9eedf1
e169f05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9eedf1
 
 
 
 
 
e169f05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9eedf1
 
e169f05
 
b9eedf1
 
e169f05
 
b9eedf1
e169f05
 
 
 
 
 
 
 
 
 
 
 
d89cb85
e169f05
d89cb85
e169f05
 
b9eedf1
 
e169f05
 
 
 
 
 
 
 
 
 
 
 
 
b9eedf1
e169f05
 
 
 
b9eedf1
e169f05
b9eedf1
e169f05
 
 
 
b9eedf1
 
e169f05
 
d89cb85
e169f05
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# coding=utf-8
import json
import os
from dataclasses import asdict, dataclass
from pathlib import Path
from typing import Any, Dict, List, Optional, Type, TypeVar, Union

from huggingface_hub import ModelHubMixin, hf_hub_download

# Generic variable that is either ModelHubMixin or a subclass thereof
T = TypeVar("T", bound="ModelHubMixin")

TEMPLATE_FILENAME = "dialogue_template.json"
IGNORE_INDEX = -100


@dataclass
class DialogueTemplate(ModelHubMixin):
    """Converts all turns of a dialogue between a user and assistant to a standardized format."""

    system: str
    messages: List[Dict[str, str]] = None
    system_token: str = "<|system|>"
    user_token: str = "<|user|>"
    assistant_token: str = "<|assistant|>"
    end_token: str = "<|end|>"

    def __post_init__(self):
        """Ensure that messages is never None."""
        if self.messages is None:
            self.messages = []

    def get_training_prompt(self) -> str:
        if len(self.messages) == 0:
            raise ValueError("Dialogue template must have at least one message.")
        prompt = self.system_token + "\n" + self.system + self.end_token + "\n"
        for message in self.messages:
            if message["role"] == "user":
                prompt += self.user_token + "\n" + message["content"] + self.end_token + "\n"
            else:
                prompt += self.assistant_token + "\n" + message["content"] + self.end_token + "\n"
        return prompt

    def get_inference_prompt(self) -> str:
        if len(self.messages) == 0:
            raise ValueError("Dialogue template must have at least one message.")
        prompt = self.system_token + "\n" + self.system + self.end_token + "\n"
        for message in self.messages:
            if message["role"] == "user":
                prompt += self.user_token + "\n" + message["content"] + self.end_token + "\n"
            else:
                prompt += self.assistant_token + "\n" + message["content"] + self.end_token + "\n"
        prompt += self.assistant_token + "\n"
        return prompt

    def get_dialogue(self):
        if len(self.messages) == 0:
            raise ValueError("Dialogue template must have at least one message.")
        prompt = ""
        for message in self.messages:
            if message["role"] == "user":
                prompt += "\n\nHuman: " + message["content"]
            else:
                prompt += "\n\nAssistant: " + message["content"]
        return prompt

    def get_special_tokens(self) -> List[str]:
        return [self.system_token, self.user_token, self.assistant_token, self.end_token]

    def copy(self):
        return DialogueTemplate(
            system=self.system,
            messages=self.messages,
            system_token=self.system_token,
            user_token=self.user_token,
            assistant_token=self.assistant_token,
            end_token=self.end_token,
        )

    def to_dict(self) -> Dict[str, Any]:
        return {k: v for k, v in asdict(self).items()}

    @classmethod
    def from_dict(cls, data):
        return DialogueTemplate(
            system=data.get("system", ""),
            messages=data.get("messages", None),
            system_token=data.get("system_token", "<|system|>"),
            user_token=data.get("user_token", "<|user|>"),
            assistant_token=data.get("assistant_token", "<|assistant|>"),
            end_token=data.get("end_token", "<|end|>"),
        )

    def _save_pretrained(self, save_directory: Union[str, Path]) -> None:
        save_directory = Path(save_directory)
        save_directory.mkdir(exist_ok=True)
        with open(save_directory / "dialogue_template.json", "w") as f:
            json.dump(self.to_dict(), f, indent=2)

    @classmethod
    def _from_pretrained(
        cls: Type[T],
        *,
        model_id: str,
        revision: Optional[str],
        cache_dir: Optional[Union[str, Path]],
        force_download: bool,
        proxies: Optional[Dict],
        resume_download: bool,
        local_files_only: bool,
        token: Optional[Union[str, bool]],
        **model_kwargs,
    ) -> T:
        """Loads the dialogue template from a local directory or the Huggingface Hub."""
        if os.path.isdir(model_id):
            print("Loading dialogue template from local directory")
            template_file = os.path.join(model_id, TEMPLATE_FILENAME)
        else:
            template_file = hf_hub_download(
                repo_id=model_id,
                filename=TEMPLATE_FILENAME,
                revision=revision or "main",
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                resume_download=resume_download,
                token=token,
                local_files_only=local_files_only,
            )
        with open(template_file, "r") as f:
            data = json.load(f)
        return cls.from_dict(data=data)


# Default template with programming specialization
default_template = DialogueTemplate(
    system="Below is a dialogue between a human user and an AI assistant. The assistant specializes in computer programming and coding, and will assist with coding questions, debugging, code optimization, algorithm design, and more. The assistant is knowledgeable in various programming languages like Python, JavaScript, and C++.",
)

# Supporting other templates
no_system_template = DialogueTemplate(system="")
alpaca_template = DialogueTemplate(
    system="Below is an instruction that describes a task. Write a response that appropriately completes the request.",
    user_token="### Instruction:",
    assistant_token="### Response:",
)

SUPPORTED_DIALOGUE_TEMPLATES = {
    "default": default_template,
    "no_system": no_system_template,
    "alpaca": alpaca_template,
}

def get_dialogue_template(template: str) -> DialogueTemplate:
    if template not in SUPPORTED_DIALOGUE_TEMPLATES:
        raise ValueError(f"Template {template} is not supported!")
    return SUPPORTED_DIALOGUE_TEMPLATES[template].copy()

def prepare_dialogue(example, dialogue_template, is_train=True):
    if "messages" in example and example["messages"] is not None:
        dialogue_template.messages = example["messages"]
    elif "prompt" in example and "completion" in example:
        dialogue_template.messages = [
            {"role": "user", "content": example["prompt"]},
            {"role": "assistant", "content": example["completion"]},
        ]
    elif "prompt" in example:
        dialogue_template.messages = [{"role": "user", "content": example["prompt"]}]
    else:
        raise ValueError(
            f"Could not format example as dialogue! Require either `messages` or `[prompt, completion]` or `[prompt]` keys but found {list(example.keys())}."
        )
    if is_train:
        example["text"] = dialogue_template.get_training_prompt()
    else:
        example["text"] = dialogue_template.get_inference_prompt()
    return example