Canstralian commited on
Commit
b9eedf1
·
verified ·
1 Parent(s): 918a703

Update dialogues.py

Browse files
Files changed (1) hide show
  1. dialogues.py +31 -93
dialogues.py CHANGED
@@ -1,18 +1,4 @@
1
  # coding=utf-8
2
- # Copyright 2023 The HuggingFace Team. All rights reserved.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
  import json
17
  import os
18
  from dataclasses import asdict, dataclass
@@ -30,10 +16,7 @@ IGNORE_INDEX = -100
30
 
31
  @dataclass
32
  class DialogueTemplate(ModelHubMixin):
33
- """Converts all turns of a dialogue between a user and assistant to a standardized format.
34
-
35
- Adapted from OpenAI's ChatML (https://github.com/openai/openai-python/blob/main/chatml.md) and Vicuna (https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py)
36
- """
37
 
38
  system: str
39
  messages: List[Dict[str, str]] = None
@@ -42,10 +25,15 @@ class DialogueTemplate(ModelHubMixin):
42
  assistant_token: str = "<|assistant|>"
43
  end_token: str = "<|end|>"
44
 
45
- def get_training_prompt(self) -> str:
46
- prompt = self.system_token + "\n" + self.system + self.end_token + "\n"
47
  if self.messages is None:
 
 
 
 
48
  raise ValueError("Dialogue template must have at least one message.")
 
49
  for message in self.messages:
50
  if message["role"] == "user":
51
  prompt += self.user_token + "\n" + message["content"] + self.end_token + "\n"
@@ -54,9 +42,9 @@ class DialogueTemplate(ModelHubMixin):
54
  return prompt
55
 
56
  def get_inference_prompt(self) -> str:
57
- prompt = self.system_token + "\n" + self.system + self.end_token + "\n"
58
- if self.messages is None:
59
  raise ValueError("Dialogue template must have at least one message.")
 
60
  for message in self.messages:
61
  if message["role"] == "user":
62
  prompt += self.user_token + "\n" + message["content"] + self.end_token + "\n"
@@ -66,10 +54,9 @@ class DialogueTemplate(ModelHubMixin):
66
  return prompt
67
 
68
  def get_dialogue(self):
69
- """Helper function to format the messages as an easy-to-read dialogue."""
70
- prompt = ""
71
- if self.messages is None:
72
  raise ValueError("Dialogue template must have at least one message.")
 
73
  for message in self.messages:
74
  if message["role"] == "user":
75
  prompt += "\n\nHuman: " + message["content"]
@@ -96,12 +83,12 @@ class DialogueTemplate(ModelHubMixin):
96
  @classmethod
97
  def from_dict(cls, data):
98
  return DialogueTemplate(
99
- system=data["system"] if "system" in data else "",
100
- messages=data["messages"] if "messages" in data else None,
101
- system_token=data["system_token"] if "system_token" in data else "<|system|>",
102
- user_token=data["user_token"] if "user_token" in data else "<|user|>",
103
- assistant_token=data["assistant_token"] if "assistant_token" in data else "<|assistant|>",
104
- end_token=data["end_token"] if "end_token" in data else "<|end|>",
105
  )
106
 
107
  def _save_pretrained(self, save_directory: Union[str, Path]) -> None:
@@ -124,40 +111,15 @@ class DialogueTemplate(ModelHubMixin):
124
  token: Optional[Union[str, bool]],
125
  **model_kwargs,
126
  ) -> T:
127
- """Loads the dialogue template from a local directory or the Huggingface Hub.
128
-
129
- Args:
130
- model_id (`str`):
131
- ID of the model to load from the Huggingface Hub (e.g. `bigscience/bloom`).
132
- revision (`str`, *optional*):
133
- Revision of the model on the Hub. Can be a branch name, a git tag or any commit id. Defaults to the
134
- latest commit on `main` branch.
135
- force_download (`bool`, *optional*, defaults to `False`):
136
- Whether to force (re-)downloading the model weights and configuration files from the Hub, overriding
137
- the existing cache.
138
- resume_download (`bool`, *optional*, defaults to `False`):
139
- Whether to delete incompletely received files. Will attempt to resume the download if such a file exists.
140
- proxies (`Dict[str, str]`, *optional*):
141
- A dictionary of proxy servers to use by protocol or endpoint (e.g., `{'http': 'foo.bar:3128',
142
- 'http://hostname': 'foo.bar:4012'}`).
143
- token (`str` or `bool`, *optional*):
144
- The token to use as HTTP bearer authorization for remote files. By default, it will use the token
145
- cached when running `huggingface-cli login`.
146
- cache_dir (`str`, `Path`, *optional*):
147
- Path to the folder where cached files are stored.
148
- local_files_only (`bool`, *optional*, defaults to `False`):
149
- If `True`, avoid downloading the file and return the path to the local cached file if it exists.
150
- model_kwargs:
151
- Additional keyword arguments passed along to the [`~ModelHubMixin._from_pretrained`] method.
152
- """
153
- if os.path.isdir(model_id): # Can either be a local directory
154
  print("Loading dialogue template from local directory")
155
  template_file = os.path.join(model_id, TEMPLATE_FILENAME)
156
- else: # Or a template on the Hub
157
- template_file = hf_hub_download( # Download from the hub, passing same input args
158
  repo_id=model_id,
159
  filename=TEMPLATE_FILENAME,
160
- revision=revision,
161
  cache_dir=cache_dir,
162
  force_download=force_download,
163
  proxies=proxies,
@@ -165,24 +127,18 @@ class DialogueTemplate(ModelHubMixin):
165
  token=token,
166
  local_files_only=local_files_only,
167
  )
168
-
169
- # Load template
170
  with open(template_file, "r") as f:
171
  data = json.load(f)
172
  return cls.from_dict(data=data)
173
 
174
 
175
- # A shortened version of the system message in Anthropic's HHH prompt: https://gist.github.com/jareddk/2509330f8ef3d787fc5aaac67aab5f11#file-hhh_prompt-txt
176
  default_template = DialogueTemplate(
177
  system="Below is a dialogue between a human user and an AI assistant. The assistant is happy to help with almost anything, and will do its best to understand exactly what is needed.",
178
  )
179
 
180
- # OpenAI and OpenAssistant train on few to no system messages.
181
- # TODO: consider defining this as the `default` template
182
- no_system_template = DialogueTemplate(
183
- system="",
184
- )
185
-
186
  alpaca_template = DialogueTemplate(
187
  system="Below is an instruction that describes a task. Write a response that appropriately completes the request.",
188
  user_token="### Instruction:",
@@ -197,27 +153,21 @@ SUPPORTED_DIALOGUE_TEMPLATES = {
197
 
198
 
199
  def get_dialogue_template(template: str) -> DialogueTemplate:
200
- if template not in SUPPORTED_DIALOGUE_TEMPLATES.keys():
201
  raise ValueError(f"Template {template} is not supported!")
202
  return SUPPORTED_DIALOGUE_TEMPLATES[template].copy()
203
 
204
 
205
  def prepare_dialogue(example, dialogue_template, is_train=True):
206
- """Format example to single- or multi-turn dialogue."""
207
- # TODO: make this simpler by just ensuring every dataset has a messages column
208
- if "messages" in example.keys() and example["messages"] is not None:
209
  dialogue_template.messages = example["messages"]
210
- elif all(k in example.keys() for k in ("prompt", "completion")):
211
- # Construct single-turn dialogue from prompt and completion
212
  dialogue_template.messages = [
213
  {"role": "user", "content": example["prompt"]},
214
  {"role": "assistant", "content": example["completion"]},
215
  ]
216
- elif "prompt" in example.keys():
217
- # Construct single-turn dialogue from prompt (inference only)
218
- dialogue_template.messages = [
219
- {"role": "user", "content": example["prompt"]},
220
- ]
221
  else:
222
  raise ValueError(
223
  f"Could not format example as dialogue! Require either `messages` or `[prompt, completion]` or `[prompt]` keys but found {list(example.keys())}"
@@ -227,15 +177,3 @@ def prepare_dialogue(example, dialogue_template, is_train=True):
227
  else:
228
  example["text"] = dialogue_template.get_inference_prompt()
229
  return example
230
-
231
-
232
- def mask_user_labels(tokenizer, dialogue_template, labels):
233
- """Masks the user turns of a dialogue from the loss"""
234
- user_token_id = tokenizer.convert_tokens_to_ids(dialogue_template.user_token)
235
- assistant_token_id = tokenizer.convert_tokens_to_ids(dialogue_template.assistant_token)
236
- for idx, label_id in enumerate(labels):
237
- if label_id == user_token_id:
238
- current_idx = idx
239
- while labels[current_idx] != assistant_token_id and current_idx < len(labels):
240
- labels[current_idx] = IGNORE_INDEX
241
- current_idx += 1
 
1
  # coding=utf-8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  import json
3
  import os
4
  from dataclasses import asdict, dataclass
 
16
 
17
  @dataclass
18
  class DialogueTemplate(ModelHubMixin):
19
+ """Converts all turns of a dialogue between a user and assistant to a standardized format."""
 
 
 
20
 
21
  system: str
22
  messages: List[Dict[str, str]] = None
 
25
  assistant_token: str = "<|assistant|>"
26
  end_token: str = "<|end|>"
27
 
28
+ def __post_init__(self):
29
+ """Ensure that messages is never None."""
30
  if self.messages is None:
31
+ self.messages = []
32
+
33
+ def get_training_prompt(self) -> str:
34
+ if len(self.messages) == 0:
35
  raise ValueError("Dialogue template must have at least one message.")
36
+ prompt = self.system_token + "\n" + self.system + self.end_token + "\n"
37
  for message in self.messages:
38
  if message["role"] == "user":
39
  prompt += self.user_token + "\n" + message["content"] + self.end_token + "\n"
 
42
  return prompt
43
 
44
  def get_inference_prompt(self) -> str:
45
+ if len(self.messages) == 0:
 
46
  raise ValueError("Dialogue template must have at least one message.")
47
+ prompt = self.system_token + "\n" + self.system + self.end_token + "\n"
48
  for message in self.messages:
49
  if message["role"] == "user":
50
  prompt += self.user_token + "\n" + message["content"] + self.end_token + "\n"
 
54
  return prompt
55
 
56
  def get_dialogue(self):
57
+ if len(self.messages) == 0:
 
 
58
  raise ValueError("Dialogue template must have at least one message.")
59
+ prompt = ""
60
  for message in self.messages:
61
  if message["role"] == "user":
62
  prompt += "\n\nHuman: " + message["content"]
 
83
  @classmethod
84
  def from_dict(cls, data):
85
  return DialogueTemplate(
86
+ system=data.get("system", ""),
87
+ messages=data.get("messages", None),
88
+ system_token=data.get("system_token", "<|system|>"),
89
+ user_token=data.get("user_token", "<|user|>"),
90
+ assistant_token=data.get("assistant_token", "<|assistant|>"),
91
+ end_token=data.get("end_token", "<|end|>"),
92
  )
93
 
94
  def _save_pretrained(self, save_directory: Union[str, Path]) -> None:
 
111
  token: Optional[Union[str, bool]],
112
  **model_kwargs,
113
  ) -> T:
114
+ """Loads the dialogue template from a local directory or the Huggingface Hub."""
115
+ if os.path.isdir(model_id):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
  print("Loading dialogue template from local directory")
117
  template_file = os.path.join(model_id, TEMPLATE_FILENAME)
118
+ else:
119
+ template_file = hf_hub_download(
120
  repo_id=model_id,
121
  filename=TEMPLATE_FILENAME,
122
+ revision=revision or "main",
123
  cache_dir=cache_dir,
124
  force_download=force_download,
125
  proxies=proxies,
 
127
  token=token,
128
  local_files_only=local_files_only,
129
  )
 
 
130
  with open(template_file, "r") as f:
131
  data = json.load(f)
132
  return cls.from_dict(data=data)
133
 
134
 
135
+ # Default template
136
  default_template = DialogueTemplate(
137
  system="Below is a dialogue between a human user and an AI assistant. The assistant is happy to help with almost anything, and will do its best to understand exactly what is needed.",
138
  )
139
 
140
+ # Supporting other templates
141
+ no_system_template = DialogueTemplate(system="")
 
 
 
 
142
  alpaca_template = DialogueTemplate(
143
  system="Below is an instruction that describes a task. Write a response that appropriately completes the request.",
144
  user_token="### Instruction:",
 
153
 
154
 
155
  def get_dialogue_template(template: str) -> DialogueTemplate:
156
+ if template not in SUPPORTED_DIALOGUE_TEMPLATES:
157
  raise ValueError(f"Template {template} is not supported!")
158
  return SUPPORTED_DIALOGUE_TEMPLATES[template].copy()
159
 
160
 
161
  def prepare_dialogue(example, dialogue_template, is_train=True):
162
+ if "messages" in example and example["messages"] is not None:
 
 
163
  dialogue_template.messages = example["messages"]
164
+ elif "prompt" in example and "completion" in example:
 
165
  dialogue_template.messages = [
166
  {"role": "user", "content": example["prompt"]},
167
  {"role": "assistant", "content": example["completion"]},
168
  ]
169
+ elif "prompt" in example:
170
+ dialogue_template.messages = [{"role": "user", "content": example["prompt"]}]
 
 
 
171
  else:
172
  raise ValueError(
173
  f"Could not format example as dialogue! Require either `messages` or `[prompt, completion]` or `[prompt]` keys but found {list(example.keys())}"
 
177
  else:
178
  example["text"] = dialogue_template.get_inference_prompt()
179
  return example