File size: 5,316 Bytes
0643cfc
 
 
38e585d
0643cfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3afd205
0643cfc
3afd205
0643cfc
 
 
 
 
 
 
38e585d
 
0643cfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38e585d
0643cfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38e585d
 
 
 
 
 
 
0643cfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38e585d
 
 
 
 
0643cfc
 
 
 
 
 
 
38e585d
0643cfc
 
 
 
 
 
38e585d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import random
import pandas as pd
from datetime import datetime
from huggingface_hub import hf_hub_download, HfApi


class Model:
    """
    Class containing the info of a model.

    :param name: Name of the model
    :param elo: Elo rating of the model
    :param games_played: Number of games played by the model (useful if we implement sigma uncertainty)
    """
    def __init__(self, name, elo=1200, games_played=0):
        self.name = name
        self.elo = elo
        self.games_played = games_played


class Matchmaking:
    """
    Class managing the matchmaking between the models.

    :param models: List of models
    :param queue: Temporary list of models used for the matching process
    :param k: Dev coefficient
    :param max_diff: Maximum difference considered between two models' elo
    :param matches: Dictionary containing the match history (to later upload as CSV)
    """
    def __init__(self, models, env):
        self.models = models
        self.env = env
        self.queue = self.models.copy()
        self.k = 20
        self.max_diff = 500
        self.matches = {
            "model1": [],
            "model2": [],
            "result": [],
            "datetime": [],
            "env": []
        }

    def run(self):
        """
        Run the matchmaking process.
        Add models to the queue, shuffle it, and match the models one by one to models with close ratings.
        Compute the new elo for each model after each match and add the match to the match history.
        """
        for i in range(10):
            self.queue = self.models.copy()
            random.shuffle(self.queue)
            while len(self.queue) > 1:
                model1 = self.queue.pop(0)
                model2 = self.queue.pop(self.find_n_closest_indexes(model1, 10))
                result = match(model1, model2)
                self.compute_elo(model1, model2, result)
                self.matches["model1"].append(model1.name)
                self.matches["model2"].append(model2.name)
                self.matches["result"].append(result)
                self.matches["datetime"].append(datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"))
                self.matches["env"].append(self.env)

    def compute_elo(self, model1, model2, result):
        """ Compute the new elo for each model based on a match result. """
        delta = model1.elo - model2.elo
        win_probability = 1 / (1 + 10 ** (-delta / 500))
        model1.elo += self.k * (result - win_probability)
        model2.elo -= self.k * (result - win_probability)

    def find_n_closest_indexes(self, model, n) -> int:
        """
        Get a model index with a fairly close rating. If no model is found, return the last model in the queue.
        We don't always pick the closest rating to add variety to the matchups.

        :param model: Model to compare
        :param n: Number of close models from which to pick a candidate
        :return: id of the chosen candidate
        """
        indexes = []
        closest_diffs = [9999999] * n
        for i, m in enumerate(self.queue):
            if m.name == model.name:
                continue
            diff = abs(m.elo - model.elo)
            if diff < max(closest_diffs):
                closest_diffs.append(diff)
                closest_diffs.sort()
                closest_diffs.pop()
                indexes.append(i)
        random.shuffle(indexes)
        return indexes[0]

    def to_csv(self):
        """ Save the match history as a CSV file to the hub. """
        df = pd.DataFrame(columns=['name', 'elo'])
        for model in self.models:
            df = pd.concat([df, pd.DataFrame([[model.name, model.elo]], columns=['name', 'elo'])])
        df.to_csv('elo.csv', index=False)
        df_matches = pd.DataFrame(self.matches)
        date = datetime.now()
        df_matches.to_csv(f"matches/{self.env}__{date.strftime('%Y-%m-%d_%H-%M-%S_%f')}.csv", index=False)
        api.upload_file(
            path_or_fileobj=f"matches/{self.env}__{date.strftime('%Y-%m-%d_%H-%M-%S_%f')}.csv",
            path_in_repo=f"match_history/{self.env}__{date.strftime('%Y-%m-%d_%H-%M-%S_%f')}.csv",
            repo_id="CarlCochet/BotFights"
        )


def match(model1, model2) -> float:
    """
    !!! Current code is placeholder !!!
    TODO: Launch a Unity process with the 2 models and get the result of the match

    :param model1: First Model object
    :param model2: Second Model object
    :return: match result (0: model1 lost, 0.5: draw, 1: model1 won)
    """
    result = random.randint(0, 2) / 2
    return result


def get_models_list() -> list:
    """
    !!! Current code is placeholder !!!
    TODO: Create a list of Model objects from the models found on the hub

    :return: list of Model objects
    """
    models = []
    hf_hub_download(
        repo_id="CarlCochet/BotFights",
        filename="elo.csv",
    )
    data = pd.read_csv("elo.csv")
    for i, row in data.iterrows():
        models.append(Model(row["name"], row["elo"]))
    return models


def init_matchmaking():
    models = get_models_list()
    matchmaking = Matchmaking(models, "snowball-fight")
    matchmaking.run()
    matchmaking.to_csv()


if __name__ == "__main__":
    print("It's running!")
    api = HfApi()
    init_matchmaking()