Update app.py
Browse files
app.py
CHANGED
@@ -46,6 +46,11 @@ activations = sorted(activations)
|
|
46 |
# Step 3: Prediction function
|
47 |
def predict(r, g, b, activation, seed, neurons):
|
48 |
try:
|
|
|
|
|
|
|
|
|
|
|
49 |
X = np.array([[r, g, b]])
|
50 |
|
51 |
# Linear prediction (you can replace this with your actual linear model)
|
@@ -59,7 +64,8 @@ def predict(r, g, b, activation, seed, neurons):
|
|
59 |
model = tf.keras.models.load_model(keras_path)
|
60 |
ann_pred = model.predict(X)[0][0]
|
61 |
|
62 |
-
|
|
|
63 |
|
64 |
except Exception as e:
|
65 |
return f"Error: {str(e)}", ""
|
@@ -78,14 +84,14 @@ with gr.Blocks() as demo:
|
|
78 |
gr.Markdown("Dynamically select models and predict cholesterol concentration.")
|
79 |
|
80 |
with gr.Row():
|
81 |
-
r = gr.Number(label="R")
|
82 |
-
g = gr.Number(label="G")
|
83 |
-
b = gr.Number(label="B")
|
84 |
|
85 |
with gr.Row():
|
86 |
activation = gr.Dropdown(choices=activations, label="Activation Function", interactive=True)
|
87 |
-
seed = gr.Dropdown(label="Seed", interactive=True)
|
88 |
-
neurons = gr.Dropdown(label="Neurons", interactive=True)
|
89 |
|
90 |
activation.change(update_seeds, inputs=[activation], outputs=[seed])
|
91 |
seed.change(update_neurons, inputs=[activation, seed], outputs=[neurons])
|
@@ -94,8 +100,8 @@ with gr.Blocks() as demo:
|
|
94 |
btn = gr.Button("Predict")
|
95 |
|
96 |
with gr.Row():
|
97 |
-
ann_output = gr.Text(label="ANN Model Prediction")
|
98 |
-
lin_rgb_output = gr.Text(label="Linear
|
99 |
|
100 |
btn.click(
|
101 |
fn=predict,
|
|
|
46 |
# Step 3: Prediction function
|
47 |
def predict(r, g, b, activation, seed, neurons):
|
48 |
try:
|
49 |
+
# Normalise R G B
|
50 |
+
r = r/255
|
51 |
+
g = g/255
|
52 |
+
b = b/255
|
53 |
+
|
54 |
X = np.array([[r, g, b]])
|
55 |
|
56 |
# Linear prediction (you can replace this with your actual linear model)
|
|
|
64 |
model = tf.keras.models.load_model(keras_path)
|
65 |
ann_pred = model.predict(X)[0][0]
|
66 |
|
67 |
+
# Rescale cholestrol concentration prediction in mM
|
68 |
+
return ann_pred*50, lin_pred_rgb*50
|
69 |
|
70 |
except Exception as e:
|
71 |
return f"Error: {str(e)}", ""
|
|
|
84 |
gr.Markdown("Dynamically select models and predict cholesterol concentration.")
|
85 |
|
86 |
with gr.Row():
|
87 |
+
r = gr.Number(label="R (0 -255)")
|
88 |
+
g = gr.Number(label="G (0 -255)")
|
89 |
+
b = gr.Number(label="B (0 -255)")
|
90 |
|
91 |
with gr.Row():
|
92 |
activation = gr.Dropdown(choices=activations, label="Activation Function", interactive=True)
|
93 |
+
seed = gr.Dropdown(choices=seed, label="Seed", interactive=True)
|
94 |
+
neurons = gr.Dropdown(choices=neurons, label="Neurons", interactive=True)
|
95 |
|
96 |
activation.change(update_seeds, inputs=[activation], outputs=[seed])
|
97 |
seed.change(update_neurons, inputs=[activation, seed], outputs=[neurons])
|
|
|
100 |
btn = gr.Button("Predict")
|
101 |
|
102 |
with gr.Row():
|
103 |
+
ann_output = gr.Text(label="Cholestrol Conentration (mM) - ANN Model Prediction ")
|
104 |
+
lin_rgb_output = gr.Text(label="Cholestrol Conentration (mM) - Linear Model Prediction")
|
105 |
|
106 |
btn.click(
|
107 |
fn=predict,
|