chatbot / database_app.py
ChaitanyaFM's picture
Created index file to store the indices
060c9d8
# import streamlit as st
# from dotenv import load_dotenv
# from PyPDF2 import PdfReader
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain.embeddings import HuggingFaceInstructEmbeddings
# from langchain.vectorstores import FAISS
# from langchain.memory import ConversationBufferMemory
# from langchain.chains import ConversationalRetrievalChain
# from htmlTemplates import css, bot_template, user_template
# from langchain.llms import HuggingFaceHub
# import psycopg2
# from pgvector import PGVector
# # Database connection parameters
# DB_HOST = "localhost"
# DB_PORT = "5432"
# DB_NAME = "chatbot"
# DB_USER = "admin"
# DB_PASSWORD = "admin"
# #Function to establish a database connection
# def connect_to_postgresql():
# return psycopg2.connect(
# host=DB_HOST,
# port=DB_PORT,
# database=DB_NAME,
# user=DB_USER,
# password=DB_PASSWORD
# )
# def store_embeddings_in_postgresql(text_chunks, conn):
# """Function to store embeddings in PostgreSQL using pgvector"""
# # Create a cursor
# cursor = conn.cursor()
# try:
# # Create a table if not exists
# cursor.execute("""
# CREATE TABLE IF NOT EXISTS embeddings (
# id SERIAL PRIMARY KEY,
# vector PG_VECTOR
# )
# """)
# # Insert embeddings into the table
# for text_chunk in text_chunks:
# # To store embeddings in a 'vector' column in 'embeddings' table
# cursor.execute("INSERT INTO embeddings (vector) VALUES (PG_VECTOR(%s))", (text_chunk,))
# # Commit the transaction
# conn.commit()
# st.success("Embeddings stored successfully in PostgreSQL.")
# except Exception as e:
# # Rollback in case of an error
# conn.rollback()
# st.error(f"Error storing embeddings in PostgreSQL: {str(e)}")
# finally:
# # Close the cursor
# cursor.close()
# def create_index_in_postgresql(conn):
# """Function to create an index on the stored vectors using HNSW or IVFFIT"""
# # Create a cursor
# cursor = conn.cursor()
# try:
# # Create an index if not exists
# cursor.execute("""
# CREATE INDEX IF NOT EXISTS embeddings_index
# ON embeddings
# USING ivfflat (vector)
# """)
# # Commit the transaction
# conn.commit()
# st.success("Index created successfully in PostgreSQL.")
# except Exception as e:
# # Rollback in case of an error
# conn.rollback()
# st.error(f"Error creating index in PostgreSQL: {str(e)}")
# finally:
# # Close the cursor
# cursor.close()
# def get_pdf_text(pdf):
# """Upload pdf files and extract text"""
# text = ""
# pdf_reader = PdfReader(pdf)
# for page in pdf_reader.pages:
# text += page.extract_text()
# return text
# def get_files(text_doc):
# """Upload text files and extraxt text"""
# text =""
# for file in text_doc:
# print(text)
# if file.type == "text/plain":
# # Read the text directly from the file
# text += file.getvalue().decode("utf-8")
# elif file.type == "application/pdf":
# text += get_pdf_text(file)
# return text
# def get_text_chunks(text):
# """Create chunks of the extracted text"""
# text_splitter = RecursiveCharacterTextSplitter(
# chunk_size=900,
# chunk_overlap=0,
# separators="\n",
# add_start_index = True,
# length_function= len
# )
# chunks = text_splitter.split_text(text)
# return chunks
# def get_vectorstore(text_chunks, conn):
# """Create embeddings for the chunks and store them in a vectorstore"""
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
# vectorstore = PGVector.from_texts(texts=text_chunks, embedding=embeddings, connection=conn)
# return vectorstore
# def get_conversation_chain(vectorstore):
# llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.2, "max_length":1024})
# memory = ConversationBufferMemory(
# memory_key='chat_history', return_messages=True)
# conversation_chain = ConversationalRetrievalChain.from_llm(
# llm=llm,
# retriever=vectorstore.as_retriever(),
# memory=memory
# )
# return conversation_chain
# def handle_userinput(user_question):
# response = st.session_state.conversation({'question': user_question})
# st.session_state.chat_history = response['chat_history']
# for i, message in enumerate(st.session_state.chat_history):
# if i % 2 == 0:
# st.write(user_template.replace(
# "{{MSG}}", message.content), unsafe_allow_html=True)
# else:
# st.write(bot_template.replace(
# "{{MSG}}", message.content), unsafe_allow_html=True)
# def main():
# load_dotenv()
# st.set_page_config(page_title="ChatBot")
# st.write(css, unsafe_allow_html=True)
# if "conversation" not in st.session_state:
# st.session_state.conversation = None
# if "chat_history" not in st.session_state:
# st.session_state.chat_history = None
# # Connect to PostgreSQL
# conn = connect_to_postgresql()
# st.header("Chat Bot")
# user_question = st.text_input("Ask a question:")
# if user_question:
# handle_userinput(user_question, conn)
# with st.sidebar:
# st.subheader("Your documents")
# pdf_docs = st.file_uploader(
# "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
# if st.button("Process"):
# with st.spinner("Processing"):
# # get text
# raw_text = get_files(pdf_docs)
# # get the text chunks
# text_chunks = get_text_chunks(raw_text)
# # store embeddings in PostgreSQL
# store_embeddings_in_postgresql(text_chunks, conn)
# # create vector store
# vectorstore = get_vectorstore(text_chunks, conn)
# # create index in PostgreSQL
# create_index_in_postgresql(conn)
# # create conversation chain
# st.session_state.conversation = get_conversation_chain(
# vectorstore)
# if __name__ == '__main__':
# main()