Spaces:
Runtime error
Runtime error
# import streamlit as st | |
# from dotenv import load_dotenv | |
# from PyPDF2 import PdfReader | |
# from langchain.text_splitter import RecursiveCharacterTextSplitter | |
# from langchain.embeddings import HuggingFaceInstructEmbeddings | |
# from langchain.vectorstores import FAISS | |
# from langchain.memory import ConversationBufferMemory | |
# from langchain.chains import ConversationalRetrievalChain | |
# from htmlTemplates import css, bot_template, user_template | |
# from langchain.llms import HuggingFaceHub | |
# import psycopg2 | |
# from pgvector import PGVector | |
# # Database connection parameters | |
# DB_HOST = "localhost" | |
# DB_PORT = "5432" | |
# DB_NAME = "chatbot" | |
# DB_USER = "admin" | |
# DB_PASSWORD = "admin" | |
# #Function to establish a database connection | |
# def connect_to_postgresql(): | |
# return psycopg2.connect( | |
# host=DB_HOST, | |
# port=DB_PORT, | |
# database=DB_NAME, | |
# user=DB_USER, | |
# password=DB_PASSWORD | |
# ) | |
# def store_embeddings_in_postgresql(text_chunks, conn): | |
# """Function to store embeddings in PostgreSQL using pgvector""" | |
# # Create a cursor | |
# cursor = conn.cursor() | |
# try: | |
# # Create a table if not exists | |
# cursor.execute(""" | |
# CREATE TABLE IF NOT EXISTS embeddings ( | |
# id SERIAL PRIMARY KEY, | |
# vector PG_VECTOR | |
# ) | |
# """) | |
# # Insert embeddings into the table | |
# for text_chunk in text_chunks: | |
# # To store embeddings in a 'vector' column in 'embeddings' table | |
# cursor.execute("INSERT INTO embeddings (vector) VALUES (PG_VECTOR(%s))", (text_chunk,)) | |
# # Commit the transaction | |
# conn.commit() | |
# st.success("Embeddings stored successfully in PostgreSQL.") | |
# except Exception as e: | |
# # Rollback in case of an error | |
# conn.rollback() | |
# st.error(f"Error storing embeddings in PostgreSQL: {str(e)}") | |
# finally: | |
# # Close the cursor | |
# cursor.close() | |
# def create_index_in_postgresql(conn): | |
# """Function to create an index on the stored vectors using HNSW or IVFFIT""" | |
# # Create a cursor | |
# cursor = conn.cursor() | |
# try: | |
# # Create an index if not exists | |
# cursor.execute(""" | |
# CREATE INDEX IF NOT EXISTS embeddings_index | |
# ON embeddings | |
# USING ivfflat (vector) | |
# """) | |
# # Commit the transaction | |
# conn.commit() | |
# st.success("Index created successfully in PostgreSQL.") | |
# except Exception as e: | |
# # Rollback in case of an error | |
# conn.rollback() | |
# st.error(f"Error creating index in PostgreSQL: {str(e)}") | |
# finally: | |
# # Close the cursor | |
# cursor.close() | |
# def get_pdf_text(pdf): | |
# """Upload pdf files and extract text""" | |
# text = "" | |
# pdf_reader = PdfReader(pdf) | |
# for page in pdf_reader.pages: | |
# text += page.extract_text() | |
# return text | |
# def get_files(text_doc): | |
# """Upload text files and extraxt text""" | |
# text ="" | |
# for file in text_doc: | |
# print(text) | |
# if file.type == "text/plain": | |
# # Read the text directly from the file | |
# text += file.getvalue().decode("utf-8") | |
# elif file.type == "application/pdf": | |
# text += get_pdf_text(file) | |
# return text | |
# def get_text_chunks(text): | |
# """Create chunks of the extracted text""" | |
# text_splitter = RecursiveCharacterTextSplitter( | |
# chunk_size=900, | |
# chunk_overlap=0, | |
# separators="\n", | |
# add_start_index = True, | |
# length_function= len | |
# ) | |
# chunks = text_splitter.split_text(text) | |
# return chunks | |
# def get_vectorstore(text_chunks, conn): | |
# """Create embeddings for the chunks and store them in a vectorstore""" | |
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") | |
# vectorstore = PGVector.from_texts(texts=text_chunks, embedding=embeddings, connection=conn) | |
# return vectorstore | |
# def get_conversation_chain(vectorstore): | |
# llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.2, "max_length":1024}) | |
# memory = ConversationBufferMemory( | |
# memory_key='chat_history', return_messages=True) | |
# conversation_chain = ConversationalRetrievalChain.from_llm( | |
# llm=llm, | |
# retriever=vectorstore.as_retriever(), | |
# memory=memory | |
# ) | |
# return conversation_chain | |
# def handle_userinput(user_question): | |
# response = st.session_state.conversation({'question': user_question}) | |
# st.session_state.chat_history = response['chat_history'] | |
# for i, message in enumerate(st.session_state.chat_history): | |
# if i % 2 == 0: | |
# st.write(user_template.replace( | |
# "{{MSG}}", message.content), unsafe_allow_html=True) | |
# else: | |
# st.write(bot_template.replace( | |
# "{{MSG}}", message.content), unsafe_allow_html=True) | |
# def main(): | |
# load_dotenv() | |
# st.set_page_config(page_title="ChatBot") | |
# st.write(css, unsafe_allow_html=True) | |
# if "conversation" not in st.session_state: | |
# st.session_state.conversation = None | |
# if "chat_history" not in st.session_state: | |
# st.session_state.chat_history = None | |
# # Connect to PostgreSQL | |
# conn = connect_to_postgresql() | |
# st.header("Chat Bot") | |
# user_question = st.text_input("Ask a question:") | |
# if user_question: | |
# handle_userinput(user_question, conn) | |
# with st.sidebar: | |
# st.subheader("Your documents") | |
# pdf_docs = st.file_uploader( | |
# "Upload your PDFs here and click on 'Process'", accept_multiple_files=True) | |
# if st.button("Process"): | |
# with st.spinner("Processing"): | |
# # get text | |
# raw_text = get_files(pdf_docs) | |
# # get the text chunks | |
# text_chunks = get_text_chunks(raw_text) | |
# # store embeddings in PostgreSQL | |
# store_embeddings_in_postgresql(text_chunks, conn) | |
# # create vector store | |
# vectorstore = get_vectorstore(text_chunks, conn) | |
# # create index in PostgreSQL | |
# create_index_in_postgresql(conn) | |
# # create conversation chain | |
# st.session_state.conversation = get_conversation_chain( | |
# vectorstore) | |
# if __name__ == '__main__': | |
# main() |