CharlieAmalet commited on
Commit
2db3b8e
·
verified ·
1 Parent(s): d87a301

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -2
app.py CHANGED
@@ -3,6 +3,7 @@ import gradio as gr
3
  import torch
4
  from PIL import Image, ImageFilter, ImageDraw
5
  from ultralytics import YOLO
 
6
 
7
  MODEL_PATH = "./models/face_yolov8n_v2.pt"
8
  MODEL = YOLO(MODEL_PATH)
@@ -37,7 +38,8 @@ def create_rounded_rectangle_mask(image:Image.Image, radius, alpha=255):
37
 
38
  def max_rounding_radius(rect_coords):
39
  # Extract the coordinates of the rectangle [x0, y0, x1, y1]
40
- rect_coords = [coord-1 for coord in rect_coords]
 
41
  x0, y0, x1, y1 = rect_coords
42
 
43
  # Calculate the width and height of the rectangle
@@ -50,11 +52,12 @@ def max_rounding_radius(rect_coords):
50
  # Calculate the maximum radius as half of the smallest dimension
51
  return min_dimension // 2
52
 
 
53
  def generate_image(source_image:Image.Image, confidence=0.3, radius=50, blur_amount=10, margin=0):
54
  if source_image is None:
55
  return source_image
56
 
57
- device = "cuda" if torch.cuda.is_available() else "cpu"
58
  pred = MODEL(source_image, conf=confidence, device=device)
59
  bboxes = pred[0].boxes.xyxy.cpu().numpy()
60
  if bboxes.size == 0:
 
3
  import torch
4
  from PIL import Image, ImageFilter, ImageDraw
5
  from ultralytics import YOLO
6
+ import spaces
7
 
8
  MODEL_PATH = "./models/face_yolov8n_v2.pt"
9
  MODEL = YOLO(MODEL_PATH)
 
38
 
39
  def max_rounding_radius(rect_coords):
40
  # Extract the coordinates of the rectangle [x0, y0, x1, y1]
41
+ rect_coords = [coord
42
+ -1 for coord in rect_coords]
43
  x0, y0, x1, y1 = rect_coords
44
 
45
  # Calculate the width and height of the rectangle
 
52
  # Calculate the maximum radius as half of the smallest dimension
53
  return min_dimension // 2
54
 
55
+ @spaces.GPU(enable_queue=True)
56
  def generate_image(source_image:Image.Image, confidence=0.3, radius=50, blur_amount=10, margin=0):
57
  if source_image is None:
58
  return source_image
59
 
60
+ device = "cuda"# if torch.cuda.is_available() else "cpu"
61
  pred = MODEL(source_image, conf=confidence, device=device)
62
  bboxes = pred[0].boxes.xyxy.cpu().numpy()
63
  if bboxes.size == 0: