Kseniia-Kholina commited on
Commit
11943f3
·
verified ·
1 Parent(s): 84afffe

Delete heatmap.py

Browse files
Files changed (1) hide show
  1. heatmap.py +0 -73
heatmap.py DELETED
@@ -1,73 +0,0 @@
1
- import transformers
2
- from transformers import AutoTokenizer, AutoModelForMaskedLM
3
- import logging
4
- import torch
5
- import matplotlib.pyplot as plt
6
- import seaborn as sns
7
- import numpy as np
8
- import gradio as gr
9
-
10
-
11
-
12
- logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR)
13
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
14
- print(f"Using device: {device}")
15
-
16
- # Load the tokenizer and model
17
- model_name = "ChatterjeeLab/FusOn-pLM"
18
- tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
19
- model = AutoModelForMaskedLM.from_pretrained(model_name, trust_remote_code=True)
20
- model.to(device)
21
- model.eval()
22
-
23
-
24
- # fix this to take dynamic input
25
- sequence = 'MCNTNMS'
26
- all_logits = []
27
- for i in range(len(sequence)):
28
- # add a masked token
29
- masked_seq = sequence[:i] + '<mask>' + sequence[i+1:]
30
-
31
- # tokenize masked sequence
32
- inputs = tokenizer(masked_seq, return_tensors="pt", padding=True, truncation=True,max_length=2000)
33
- inputs = {k: v.to(device) for k, v in inputs.items()}
34
-
35
- # predict logits for the masked token
36
-
37
- with torch.no_grad():
38
- logits = model(**inputs).logits
39
- mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1]
40
- mask_token_logits = logits[0, mask_token_index, :]
41
- top_1_tokens = torch.topk(mask_token_logits, 1, dim=1).indices[0].item()
42
- logits_array = mask_token_logits.cpu().numpy()
43
-
44
- # filter out non-amino acid tokens
45
- filtered_indices = list(range(4, 23 + 1))
46
- filtered_logits = logits_array[:, filtered_indices]
47
- all_logits.append(filtered_logits)
48
-
49
- token_indices = torch.arange(logits.size(-1))
50
- tokens = [tokenizer.decode([idx]) for idx in token_indices]
51
- filtered_tokens = [tokens[i] for i in filtered_indices]
52
-
53
- all_logits_array = np.vstack(all_logits)
54
- normalized_logits_array = (all_logits_array - all_logits_array.min()) / (all_logits_array.max() - all_logits_array.min())
55
- transposed_logits_array = normalized_logits_array.T
56
-
57
-
58
-
59
- # Plotting the heatmap
60
- step = 50
61
- y_tick_positions = np.arange(0, len(sequence), step)
62
- y_tick_labels = [str(pos) for pos in y_tick_positions]
63
-
64
- plt.figure(figsize=(15, 8))
65
- sns.heatmap(transposed_logits_array, cmap='plasma', xticklabels=y_tick_labels, yticklabels=filtered_tokens)
66
- plt.title('Logits for masked per residue tokens')
67
- plt.ylabel('Token')
68
- plt.xlabel('Residue Index')
69
- plt.yticks(rotation=0)
70
- plt.xticks(y_tick_positions, y_tick_labels, rotation = 0)
71
- plt.show()
72
- plt.savefig(f'heatmap_{i}.png', dpi=300, bbox_inches='tight')
73
-