Kseniia-Kholina commited on
Commit
25d7145
·
verified ·
1 Parent(s): 26ac9e7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -7
app.py CHANGED
@@ -1,10 +1,31 @@
1
- #@title Lauch the Interface
2
- #@markdown Run to launch the interface.
3
- #@markdown 1. Enter the protein sequence.
4
- #@markdown 2. Specify the start and end index (inclusive) of the domain for which you would like to predict mutations (note that indexing starts at 1).
5
- #@markdown 3. Select the number of tokens you would like the model to predict for each position.
6
- #@markdown 4. Click 'Submit'.
7
- #@markdown 5. Click 'Download Outputs' to download the zip file.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
  def process_sequence(sequence, domain_bounds, n):
10
  start_index = int(domain_bounds['start'][0]) - 1
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ import torch
4
+ from transformers import AutoTokenizer, AutoModelForMaskedLM
5
+ import torch.nn.functional as F
6
+ import logging
7
+ import numpy as np
8
+ import matplotlib.pyplot as plt
9
+ import seaborn as sns
10
+ from io import BytesIO
11
+ from PIL import Image
12
+ from contextlib import contextmanager
13
+ import warnings
14
+ import sys
15
+ import os
16
+ import zipfile
17
+
18
+ logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR)
19
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
20
+ print(f"Using device: {device}")
21
+
22
+ # Load the tokenizer and model
23
+ model_name = "ChatterjeeLab/FusOn-pLM"
24
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
25
+ model = AutoModelForMaskedLM.from_pretrained(model_name, trust_remote_code=True)
26
+ model.to(device)
27
+ model.eval()
28
+
29
 
30
  def process_sequence(sequence, domain_bounds, n):
31
  start_index = int(domain_bounds['start'][0]) - 1