AURA_CXR / Chest_Xray_Report_Generator-Web-V2.py
ChayanM's picture
Upload 82 files
9736014 verified
raw
history blame contribute delete
17.8 kB
import os
import transformers
from transformers import pipeline
### Gradio
import gradio as gr
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
from typing import Union, Iterable
import time
#####
import cv2
import numpy as np
import pydicom
import re
##### Libraries For Grad-Cam-View
import os
import cv2
import numpy as np
import torch
from functools import partial
from torchvision import transforms
from pytorch_grad_cam import GradCAM, ScoreCAM, GradCAMPlusPlus, AblationCAM, XGradCAM, EigenCAM, EigenGradCAM, LayerCAM, FullGrad
from pytorch_grad_cam.utils.image import show_cam_on_image, preprocess_image
from pytorch_grad_cam.ablation_layer import AblationLayerVit
from transformers import VisionEncoderDecoderModel
from transformers import AutoTokenizer
import transformers
import torch
from openai import OpenAI
client = OpenAI()
import spaces # Import the spaces module for ZeroGPU
@spaces.GPU
def generate_gradcam(image_path, model_path, output_path, method='gradcam', use_cuda=True, aug_smooth=False, eigen_smooth=False):
methods = {
"gradcam": GradCAM,
"scorecam": ScoreCAM,
"gradcam++": GradCAMPlusPlus,
"ablationcam": AblationCAM,
"xgradcam": XGradCAM,
"eigencam": EigenCAM,
"eigengradcam": EigenGradCAM,
"layercam": LayerCAM,
"fullgrad": FullGrad
}
if method not in methods:
raise ValueError(f"Method should be one of {list(methods.keys())}")
model = VisionEncoderDecoderModel.from_pretrained(model_path)
model.encoder.eval()
if use_cuda and torch.cuda.is_available():
model.encoder = model.encoder.cuda()
else:
use_cuda = False
#target_layers = [model.blocks[-1].norm1] ## For ViT model
#target_layers = model.blocks[-1].norm1 ## For EfficientNet-B7 model
#target_layers = [model.encoder.encoder.layer[-1].layernorm_before] ## For ViT-based VisionEncoderDecoder model
target_layers = [model.encoder.encoder.layers[-1].blocks[-0].layernorm_after, model.encoder.encoder.layers[-1].blocks[-1].layernorm_after] ## [model.encoder.encoder.layers[-1].blocks[-1].layernorm_before, model.encoder.encoder.layers[-1].blocks[0].layernorm_before] For Swin-based VisionEncoderDecoder model
if method == "ablationcam":
cam = methods[method](model=model.encoder,
target_layers=target_layers,
use_cuda=use_cuda,
reshape_transform=reshape_transform,
ablation_layer=AblationLayerVit())
else:
cam = methods[method](model=model.encoder,
target_layers=target_layers,
use_cuda=use_cuda,
reshape_transform=reshape_transform)
rgb_img = cv2.imread(image_path, 1)[:, :, ::-1]
rgb_img = cv2.resize(rgb_img, (384, 384)) ## (224, 224)
rgb_img = np.float32(rgb_img) / 255
input_tensor = preprocess_image(rgb_img, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
targets = None
cam.batch_size = 16
grayscale_cam = cam(input_tensor=input_tensor, targets=targets, eigen_smooth=eigen_smooth, aug_smooth=aug_smooth)
grayscale_cam = grayscale_cam[0, :]
cam_image = show_cam_on_image(rgb_img, grayscale_cam)
output_file = os.path.join(output_path, 'gradcam_result.png')
cv2.imwrite(output_file, cam_image)
def reshape_transform(tensor, height=12, width=12): ### height=14, width=14 for ViT-based Model
batch_size, token_number, embed_dim = tensor.size()
if token_number < height * width:
pad = torch.zeros(batch_size, height * width - token_number, embed_dim, device=tensor.device)
tensor = torch.cat([tensor, pad], dim=1)
elif token_number > height * width:
tensor = tensor[:, :height * width, :]
result = tensor.reshape(batch_size, height, width, embed_dim)
result = result.transpose(2, 3).transpose(1, 2)
return result
# Example usage:
#image_path = "/home/chayan/CGI_Net/images/images/CXR1353_IM-0230-1001.png"
model_path = "./Model/"
output_path = "./CAM-Result/"
def sentence_case(paragraph):
sentences = paragraph.split('. ')
formatted_sentences = [sentence.capitalize() for sentence in sentences if sentence]
formatted_paragraph = '. '.join(formatted_sentences)
return formatted_paragraph
def num2sym_bullets(text, bullet='-'):
"""
Replaces '<num>.' bullet points with a specified symbol and formats the text as a bullet list.
Args:
text (str): Input text containing '<num>.' bullet points.
bullet (str): The symbol to replace '<num>.' with.
Returns:
str: Modified text with '<num>.' replaced and formatted as a bullet list.
"""
sentences = re.split(r'<num>\.\s', text)
formatted_text = '\n'.join(f'{bullet} {sentence.strip()}' for sentence in sentences if sentence.strip())
return formatted_text
def is_cxr(image_path):
"""
Checks if the uploaded image is a Chest X-ray using basic image processing.
Args:
image_path (str): Path to the uploaded image.
Returns:
bool: True if the image is likely a Chest X-ray, False otherwise.
"""
try:
image = cv2.imread(image_path)
if image is None:
raise ValueError("Invalid image path.")
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
color_std = np.std(image, axis=2).mean()
if color_std > 0:
return False
return True
except Exception as e:
print(f"Error processing image: {e}")
return False
def dicom_to_png(dicom_file, png_file):
# Load DICOM file
dicom_data = pydicom.dcmread(dicom_file)
dicom_data.PhotometricInterpretation = 'MONOCHROME1'
# Normalize pixel values to 0-255
img = dicom_data.pixel_array
img = img.astype(np.float32)
img = cv2.normalize(img, None, 0, 255, cv2.NORM_MINMAX)
img = img.astype(np.uint8)
# Save as PNG
cv2.imwrite(png_file, img)
return img
Image_Captioner = pipeline("image-to-text", model = "./Model/", device = 0)
data_dir = "./CAM-Result"
@spaces.GPU(duration=300)
def xray_report_generator(Image_file, Query):
if Image_file[-4:] =='.dcm':
png_file = 'DCM2PNG.png'
dicom_to_png(Image_file, png_file)
Image_file = os.path.join(data_dir, png_file)
output = Image_Captioner(Image_file, max_new_tokens=512)
else:
output = Image_Captioner(Image_file, max_new_tokens=512)
result = output[0]['generated_text']
output_paragraph = sentence_case(result)
final_response = num2sym_bullets(output_paragraph, bullet='-')
query_prompt = f""" You are analyzing the doctor's query based on the patient's history and the generated chest X-ray report. Extract only the information relevant to the query.
If the report mentions the queried condition, write only the exact wording without any introduction. If the condition is not mentioned, respond with: 'No relevant findings related to [query condition].'.
"""
#If the condition is negated, respond with: 'There is no [query condition].'.
completion = client.chat.completions.create(
model="gpt-4-turbo", ### gpt-4-turbo ### gpt-3.5-turbo-0125
messages=[
{"role": "system", "content": query_prompt},
{"role": "user", "content": f"Generated Report: {final_response}\nHistory/Doctor's Query: {Query}"}
],
temperature=0.2)
query_response = completion.choices[0].message.content
generate_gradcam(Image_file, model_path, output_path, method='gradcam', use_cuda=True)
grad_cam_image = output_path + 'gradcam_result.png'
return grad_cam_image, final_response, query_response
# def save_feedback(feedback):
# feedback_dir = "Chayan/Feedback/" # Update this to your desired directory
# if not os.path.exists(feedback_dir):
# os.makedirs(feedback_dir)
# feedback_file = os.path.join(feedback_dir, "feedback.txt")
# with open(feedback_file, "a") as f:
# f.write(feedback + "\n")
# return "Feedback submitted successfully!"
def save_feedback(feedback):
feedback_dir = "Chayan/Feedback/" # Update this to your desired directory
if not os.path.exists(feedback_dir):
os.makedirs(feedback_dir)
feedback_file = os.path.join(feedback_dir, "feedback.txt")
try:
with open(feedback_file, "a") as f:
f.write(feedback + "\n")
print(f"Feedback saved at: {feedback_file}")
return "Feedback submitted successfully!"
except Exception as e:
print(f"Error saving feedback: {e}")
return "Failed to submit feedback!"
# Custom Theme Definition
class Seafoam(Base):
def __init__(
self,
*,
primary_hue: Union[colors.Color, str] = colors.emerald,
secondary_hue: Union[colors.Color, str] = colors.blue,
neutral_hue: Union[colors.Color, str] = colors.gray,
spacing_size: Union[sizes.Size, str] = sizes.spacing_md,
radius_size: Union[sizes.Size, str] = sizes.radius_md,
text_size: Union[sizes.Size, str] = sizes.text_lg,
font: Union[fonts.Font, str, Iterable[Union[fonts.Font, str]]] = (
fonts.GoogleFont("Quicksand"),
"ui-sans-serif",
"sans-serif",
),
font_mono: Union[fonts.Font, str, Iterable[Union[fonts.Font, str]]] = (
fonts.GoogleFont("IBM Plex Mono"),
"ui-monospace",
"monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
spacing_size=spacing_size,
radius_size=radius_size,
text_size=text_size,
font=font,
font_mono=font_mono,
)
self.set(
body_background_fill="linear-gradient(114.2deg, rgba(184,215,21,1) -15.3%, rgba(21,215,98,1) 14.5%, rgba(21,215,182,1) 38.7%, rgba(129,189,240,1) 58.8%, rgba(219,108,205,1) 77.3%, rgba(240,129,129,1) 88.5%)"
)
# Initialize the theme
seafoam = Seafoam()
# Custom CSS styles
custom_css = """
<style>
/* Set background color for the entire Gradio app */
body, .gradio-container {
background-color: #f2f7f5 !important;
}
/* Optional: Add padding or margin for aesthetics */
.gradio-container {
padding: 20px;
}
#title {
color: green;
font-size: 36px;
font-weight: bold;
}
#description {
color: green;
font-size: 22px;
}
#title-row {
display: flex;
align-items: center;
gap: 10px;
margin-bottom: 0px;
}
#title-header h1 {
margin: 0;
}
#submit-btn {
background-color: #f5dec6; /* Banana leaf */
color: green;
padding: 15px 32px;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 30px;
margin: 4px 2px;
cursor: pointer;
}
#submit-btn:hover {
background-color: #00FFFF;
}
.intext textarea {
color: green;
font-size: 20px;
font-weight: bold;
}
.small-button {
color: green;
padding: 5px 10px;
font-size: 20px;
}
</style>
"""
# Sample image paths
sample_images = [
"./Test-Images/0d930f0a-46f813a9-db3b137b-05142eef-eca3c5a7.jpg",
"./Test-Images/93681764-ec39480e-0518b12c-199850c2-f15118ab.jpg",
"./Test-Images/6ff741e9-6ea01eef-1bf10153-d1b6beba-590b6620.jpg"
#"sample4.png",
#"sample5.png"
]
def set_input_image(image_path):
return gr.update(value=image_path)
def show_contact_info():
yield gr.update(visible=True, value="""
**Contact Us:**
- Chayan Mondal
- Email: [email protected]
- Associate Prof. Sonny Pham
- Email: [email protected]
- Dr. Ashu Gupta
- Email: [email protected]
""")
# Wait for 20 seconds (you can adjust the time as needed)
time.sleep(20)
# Hide the content after 5 seconds
yield gr.update(visible=False)
def show_acknowledgment():
yield gr.update(visible=True, value="""
**Acknowledgment:**
This Research has been supported by the Western Australian Future Health Research and Innovation Fund.
""")
# Wait for 20 seconds
time.sleep(20)
# Hide the acknowledgment
yield gr.update(visible=False)
with gr.Blocks(theme=seafoam, css=custom_css) as demo:
#gr.HTML(custom_css) # Inject custom CSS
with gr.Row(elem_id="title-row"):
with gr.Column(scale=0):
gr.Image(
value="./AURA-CXR-Logo.png",
show_label=False,
width=60,
container=False
)
with gr.Column():
gr.Markdown(
"""
<h1 style="color:blue; font-size: 32px; font-weight: bold; margin: 0;">
AURA-CXR: Explainable Diagnosis of Chest Diseases from X-rays
</h1>
""",
elem_id="title-header"
)
gr.Markdown(
"<p id='description'>Upload an X-ray image and get its report with heat-map visualization.</p>"
)
# gr.Markdown(
# """
# <h1 style="color:blue; font-size: 36px; font-weight: bold; margin: 0;">AURA-CXR: Explainable Diagnosis of Chest Diseases from X-rays</h1>
# <p id="description">Upload an X-ray image and get its report with heat-map visualization.</p>
# """
# )
#<h1 style="color:blue; font-size: 36px; font-weight: bold">AURA-CXR: Explainable Diagnosis of Chest Diseases from X-rays</h1>
with gr.Row():
inputs = gr.File(label="Upload Chest X-ray Image File", type="filepath")
with gr.Row():
with gr.Column(scale=1, min_width=300):
outputs1 = gr.Image(label="Image Viewer")
history_query = gr.Textbox(label="History/Doctor's Query", elem_classes="intext")
with gr.Column(scale=1, min_width=300):
outputs2 = gr.Image(label="Grad_CAM-Visualization")
with gr.Column(scale=1, min_width=300):
outputs3 = gr.Textbox(label="Generated Report", elem_classes = "intext")
outputs4 = gr.Textbox(label = "Query's Response", elem_classes = "intext")
submit_btn = gr.Button("Generate Report", elem_id="submit-btn", variant="primary")
def show_image(file_path):
if is_cxr(file_path): # Check if it's a valid Chest X-ray
return file_path, "Valid Image" # Show the image in Image Viewer
else:
return None, "Invalid image. Please upload a proper Chest X-ray."
# Show the uploaded image immediately in the Image Viewer
inputs.change(
fn=show_image, # Calls the function to return the same file path
inputs=inputs,
outputs=[outputs1, outputs3]
)
submit_btn.click(
fn=xray_report_generator,
inputs=[inputs,history_query],
outputs=[outputs2, outputs3, outputs4])
gr.Markdown(
"""
<h2 style="color:green; font-size: 24px;">Or choose a sample image:</h2>
"""
)
with gr.Row():
for idx, sample_image in enumerate(sample_images):
with gr.Column(scale=1):
#sample_image_component = gr.Image(value=sample_image, interactive=False)
select_button = gr.Button(f"Select Sample Image {idx+1}")
select_button.click(
fn=set_input_image,
inputs=gr.State(value=sample_image),
outputs=inputs
)
# Feedback section
gr.Markdown(
"""
<h2 style="color:green; font-size: 24px;">Provide Your Valuable Feedback:</h2>
"""
)
with gr.Row():
feedback_input = gr.Textbox(label="Your Feedback", lines=4, placeholder="Enter your feedback here...")
feedback_submit_btn = gr.Button("Submit Feedback", elem_classes="small-button", variant="secondary")
feedback_output = gr.Textbox(label="Feedback Status", interactive=False)
feedback_submit_btn.click(
fn=save_feedback,
inputs=feedback_input,
outputs=feedback_output
)
# Buttons and Markdown for Contact Us and Acknowledgment
with gr.Row():
contact_btn = gr.Button("Contact Us", elem_classes="small-button", variant="secondary")
ack_btn = gr.Button("Acknowledgment", elem_classes="small-button", variant="secondary")
contact_info = gr.Markdown(visible=False) # Initially hidden
acknowledgment_info = gr.Markdown(visible=False) # Initially hidden
# Update the content and make it visible when the buttons are clicked
contact_btn.click(fn=show_contact_info, outputs=contact_info, show_progress=False)
ack_btn.click(fn=show_acknowledgment, outputs=acknowledgment_info, show_progress=False)
# Update the content and make it visible when the buttons are clicked
# contact_btn.click(fn=show_contact_info, outputs=contact_info, show_progress=False)
# ack_btn.click(fn=show_acknowledgment, outputs=acknowledgment_info, show_progress=False)
demo.launch(share=True)