Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,446 Bytes
c2c42ca 26b5270 81435cb dca1cb5 61bc6a3 6da6b11 dca1cb5 440061e a1f66f7 ec1fa2d c329200 5d5dce7 91dd651 6da6b11 440061e 01cb3ae 440061e 01cb3ae 440061e 01cb3ae c329200 143f063 b634b72 ddbaa70 61bc6a3 dc81866 d452942 c2c42ca ce92c0d 8e3d74a c2c42ca ec1fa2d 440061e ec1fa2d 440061e 5d5dce7 c329200 5d5dce7 c329200 bc87ae3 ce92c0d c86e543 ce92c0d 440061e ddbaa70 09f0b4e ddbaa70 a3d322a 09f0b4e bc87ae3 7e8b99c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import gradio as gr
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler, LCMScheduler, AutoencoderKL,DiffusionPipeline
import torch
import numpy as np
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
import spaces
import os
import random
import uuid
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
MAX_SEED = np.iinfo(np.int32).max
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
### RealVisXL V3 ###
RealVisXLv3_pipe = DiffusionPipeline.from_pretrained(
"SG161222/RealVisXL_V3.0",
torch_dtype=torch.float16,
use_safetensors=True,
add_watermarker=False,
variant="fp16"
)
RealVisXLv3_pipe.to("cuda")
### RealVisXL V4 ###
RealVisXLv4_pipe = DiffusionPipeline.from_pretrained(
"SG161222/RealVisXL_V4.0",
torch_dtype=torch.float16,
use_safetensors=True,
add_watermarker=False,
variant="fp16"
)
RealVisXLv4_pipe.to("cuda")
## playground V2.5##
play_pipe = DiffusionPipeline.from_pretrained(
"playgroundai/playground-v2.5-1024px-aesthetic",
torch_dtype=torch.float16,
vae=vae,
use_safetensors=True,
add_watermarker=False,
variant="fp16"
)
play_pipe.to("cuda")
@spaces.GPU
def run_comparison(prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
num_inference_steps: int = 30,
num_images_per_prompt: int = 2,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
randomize_seed: bool = False,
progress=gr.Progress(track_tqdm=True),
):
seed = int(randomize_seed_fn(seed, randomize_seed))
if not use_negative_prompt:
negative_prompt = ""
image_r3 = RealVisXLv3_pipe(prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images_per_prompt,
cross_attention_kwargs={"scale": 0.65},
output_type="pil",
).images
image_paths_r3 = [save_image(img) for img in image_r3]
image_r4 = RealVisXLv4_pipe(prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images_per_prompt,
cross_attention_kwargs={"scale": 0.65},
output_type="pil",
).images
image_paths_r4 = [save_image(img) for img in image_r4]
play_pipe = play_pipe(prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images_per_prompt,
cross_attention_kwargs={"scale": 0.65},
output_type="pil",
).images
image_paths_play_pipe = [save_image(img) for img in image_r4]
return image_paths_r3, image_paths_r4,image_paths_play_pipe, seed
examples = ["A dignified beaver wearing glasses, a vest, and colorful neck tie.",
"The spirit of a tamagotchi wandering in the city of Barcelona",
"an ornate, high-backed mahogany chair with a red cushion",
"a sketch of a camel next to a stream",
"a delicate porcelain teacup sits on a saucer, its surface adorned with intricate blue patterns",
"a baby swan grafitti",
"A bald eagle made of chocolate powder, mango, and whipped cream"
]
with gr.Blocks() as demo:
gr.Markdown("## One step SDXL comparison 🦶")
gr.Markdown('Compare SDXL variants and distillations able to generate images in a single diffusion step')
prompt = gr.Textbox(label="Prompt")
run = gr.Button("Run")
with gr.Accordion("Advanced options", open=False):
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
negative_prompt = gr.Text(
label="Negative prompt",
lines=4,
max_lines=6,
value="""(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (NSFW:1.25)""",
placeholder="Enter a negative prompt",
visible=True,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Steps",
minimum=10,
maximum=60,
step=1,
value=30,
)
with gr.Row():
num_images_per_prompt = gr.Slider(
label="Images",
minimum=1,
maximum=5,
step=1,
value=2,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
visible=True
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row(visible=True):
width = gr.Slider(
label="Width",
minimum=512,
maximum=2048,
step=8,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=2048,
step=8,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=20.0,
step=0.1,
value=6,
)
with gr.Row():
with gr.Column():
image_r3 = gr.Gallery(label="RealVisXL V3",columns=1, preview=True,)
gr.Markdown("## [RealVisXL V3](https://huggingface.co)")
with gr.Column():
image_r4 = gr.Gallery(label="RealVisXL V4",columns=1, preview=True,)
gr.Markdown("## [RealVisXL V4](https://huggingface.co)")
with gr.Column():
play_pipe = gr.Gallery(label="Playground v2.5",columns=1, preview=True,)
gr.Markdown("## [Playground v2.5](https://huggingface.co)")
image_outputs = [image_r3, image_r4, play_pipe]
gr.on(
triggers=[prompt.submit, run.click],
fn=run_comparison,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
num_inference_steps,
num_images_per_prompt,
seed,
width,
height,
guidance_scale,
randomize_seed,
],
outputs=image_outputs
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
gr.Examples(
examples=examples,
fn=run_comparison,
inputs=prompt,
outputs=image_outputs,
cache_examples=False,
run_on_click=True
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(show_api=False, debug=False) |