Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,309 Bytes
c2c42ca 61bc6a3 81435cb 61bc6a3 9d41bd5 c2c42ca 61bc6a3 91dd651 c2c42ca 61bc6a3 c2c42ca 61bc6a3 c2c42ca 61bc6a3 143f063 61bc6a3 91dd651 825bfd6 61bc6a3 143f063 61bc6a3 c2c42ca 61bc6a3 34cb1b5 5e64d98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gradio as gr
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler, LCMScheduler
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
### SDXL Turbo ####
pipe_turbo = StableDiffusionXLPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16")
pipe_turbo.to("cuda")
### SDXL Lightning ###
base = "stabilityai/stable-diffusion-xl-base-1.0"
repo = "ByteDance/SDXL-Lightning"
ckpt = "sdxl_lightning_1step_unet_x0.safetensors"
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
pipe_lightning = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
pipe_lightning.scheduler = EulerDiscreteScheduler.from_config(pipe_lightning.scheduler.config, timestep_spacing="trailing", prediction_type="sample")
pipe_lightning.to("cuda")
### Hyper SDXL ###
repo_name = "ByteDance/Hyper-SD"
ckpt_name = "Hyper-SDXL-1step-Unet.safetensors"
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
unet.load_state_dict(load_file(hf_hub_download(repo_name, ckpt_name), device="cuda"))
pipe_hyper = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
pipe_hyper.scheduler = LCMScheduler.from_config(pipe_hyper.scheduler.config)
pipe_hyper.to("cuda")
def run_comparison(prompt):
image_turbo=pipe_turbo(prompt=prompt, num_inference_steps=1, guidance_scale=0).images[0]
image_lightning=pipe_lightning(prompt=prompt, num_inference_steps=1, guidance_scale=0).images[0]
image_hyper=pipe_hyper(prompt=prompt, num_inference_steps=1, guidance_scale=0, timesteps=[800]).images[0]
return image_turbo, image_lightning, image_hyper
with gr.Blocks() as demo:
prompt = gr.Textbox(label="Prompt")
run = gr.Button("Run")
with gr.Row():
image_turbo = gr.Image(label="SDXL Turbo")
image_lightning = gr.Image(label="SDXL Lightning")
image_hyper = gr.Image(label="Hyper SDXL")
run.click(fn=run_comparison, inputs=prompt, outputs=[image_turbo, image_lightning, image_hyper])
demo.launch() |