Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,630 Bytes
c2c42ca d827a95 81435cb 61bc6a3 6da6b11 9d41bd5 a1f66f7 c2c42ca aa5a24b 91dd651 c2c42ca 61bc6a3 c2c42ca aa5a24b 61bc6a3 c2c42ca 61bc6a3 143f063 aa5a24b 61bc6a3 aa5a24b 91dd651 6da6b11 e3c765a 61bc6a3 e3c765a 61bc6a3 e3c765a 61bc6a3 e3c765a 143f063 b634b72 ddbaa70 61bc6a3 dc81866 d452942 c2c42ca dc81866 ddbaa70 bc87ae3 e3c765a bc87ae3 e3c765a ddbaa70 4835fe3 e3c765a bc87ae3 5e64d98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
import gradio as gr
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler, LCMScheduler, AutoencoderKL
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
import spaces
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
### SDXL Turbo ####
pipe_turbo = StableDiffusionXLPipeline.from_pretrained("stabilityai/sdxl-turbo",
vae=vae,
torch_dtype=torch.float16,
variant="fp16"
)
pipe_turbo.to("cuda")
### SDXL Lightning ###
base = "stabilityai/stable-diffusion-xl-base-1.0"
repo = "ByteDance/SDXL-Lightning"
ckpt = "sdxl_lightning_1step_unet_x0.safetensors"
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to(torch.float16)
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt)))
pipe_lightning = StableDiffusionXLPipeline.from_pretrained(base,
unet=unet,
vae=vae,
text_encoder=pipe_turbo.text_encoder,
text_encoder_2=pipe_turbo.text_encoder_2,
tokenizer=pipe_turbo.tokenizer,
tokenizer_2=pipe_turbo.tokenizer_2,
torch_dtype=torch.float16,
variant="fp16"
)#.to("cuda")
del unet
pipe_lightning.scheduler = EulerDiscreteScheduler.from_config(pipe_lightning.scheduler.config, timestep_spacing="trailing", prediction_type="sample")
pipe_lightning.to("cuda")
### Hyper SDXL ###
repo_name = "ByteDance/Hyper-SD"
ckpt_name = "Hyper-SDXL-1step-Unet.safetensors"
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to(torch.float16)
unet.load_state_dict(load_file(hf_hub_download(repo_name, ckpt_name)))
pipe_hyper = StableDiffusionXLPipeline.from_pretrained(base,
unet=unet,
vae=vae,
text_encoder=pipe_turbo.text_encoder,
text_encoder_2=pipe_turbo.text_encoder_2,
tokenizer=pipe_turbo.tokenizer,
tokenizer_2=pipe_turbo.tokenizer_2,
torch_dtype=torch.float16,
variant="fp16"
)#.to("cuda")
pipe_hyper.scheduler = LCMScheduler.from_config(pipe_hyper.scheduler.config)
pipe_hyper.to("cuda")
del unet
@spaces.GPU
def run_comparison_turbo(prompt, progress=gr.Progress(track_tqdm=True)):
image_turbo=pipe_turbo(prompt=prompt, num_inference_steps=1, guidance_scale=0).images[0]
return image_turbo
@spaces.GPU
def run_comparison_lightning(prompt, progress=gr.Progress(track_tqdm=True)):
image_lightning=pipe_lightning(prompt=prompt, num_inference_steps=1, guidance_scale=0).images[0]
return image_lightning
@spaces.GPU
def run_comparison_hyper(prompt, progress=gr.Progress(track_tqdm=True)):
image_hyper=pipe_hyper(prompt=prompt, num_inference_steps=1, guidance_scale=0, timesteps=[800]).images[0]
return image_hyper
examples = ["A dignified beaver wearing glasses, a vest, and colorful neck tie.",
"The spirit of a tamagotchi wandering in the city of Barcelona",
"an ornate, high-backed mahogany chair with a red cushion",
"a sketch of a camel next to a stream",
"a delicate porcelain teacup sits on a saucer, its surface adorned with intricate blue patterns",
"a baby swan grafitti",
"A bald eagle made of chocolate powder, mango, and whipped cream"
]
with gr.Blocks() as demo:
gr.Markdown("## One step SDXL comparison 🦶")
gr.Markdown('Compare SDXL variants and distillations able to generate images in a single diffusion step')
prompt = gr.Textbox(label="Prompt")
run = gr.Button("Run")
with gr.Row():
with gr.Column():
image_turbo = gr.Image(label="SDXL Turbo")
gr.Markdown("## [SDXL Turbo](https://huggingface.co/stabilityai/sdxl-turbo)")
with gr.Column():
image_lightning = gr.Image(label="SDXL Lightning")
gr.Markdown("## [SDXL Lightning](https://huggingface.co/ByteDance/SDXL-Lightning)")
with gr.Column():
image_hyper = gr.Image(label="Hyper SDXL")
gr.Markdown("## [Hyper SDXL](https://huggingface.co/ByteDance/Hyper-SD)")
image_outputs = [image_turbo, image_lightning, image_hyper]
gr.on(
triggers=[prompt.submit, run.click],
fn=run_comparison_turbo,
inputs=prompt,
outputs=image_turbo
).then(
fn=run_comparison_lightning,
inputs=prompt,
outputs=image_lightning
).then(
fn=run_comparison_hyper,
inputs=prompt,
outputs=image_hyper
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=image_outputs,
cache_examples=False
)
demo.launch() |