Spaces:
Sleeping
Sleeping
File size: 4,695 Bytes
b085e51 ed4ca74 b085e51 ed4ca74 b085e51 ed4ca74 b085e51 ed4ca74 b085e51 ed4ca74 b085e51 6cca36c ed4ca74 b83d3fb ed4ca74 b085e51 6cca36c b085e51 6cca36c b085e51 bc4b9a8 b085e51 ed4ca74 b085e51 ffd0213 b085e51 ed4ca74 b085e51 ffd0213 b085e51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
import re
from langchain_openai import OpenAIEmbeddings
from langchain_openai import ChatOpenAI
from langchain_openai.embeddings import OpenAIEmbeddings
from langchain.prompts import ChatPromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import StrOutputParser
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_community.vectorstores import Qdrant
from langchain_core.runnables import RunnablePassthrough, RunnableParallel
from langchain_core.documents import Document
from operator import itemgetter
import os
from dotenv import load_dotenv
import chainlit as cl
from langchain.embeddings.base import Embeddings
from sentence_transformers import SentenceTransformer
# Load environment variables
load_dotenv()
# Custom wrapper for SentenceTransformer to work with Langchain
class LangchainSentenceTransformerEmbeddings(Embeddings):
def __init__(self, model_name: str):
self.model = SentenceTransformer(model_name)
def embed_documents(self, texts: list[str]) -> list[list[float]]:
# Encode the documents using SentenceTransformer's encode method
return self.model.encode(texts)
def embed_query(self, text: str) -> list[float]:
# Encode a single query using SentenceTransformer's encode method
return self.model.encode([text])[0]
# Initialize the custom embedding model
embedding_model = LangchainSentenceTransformerEmbeddings("Cheselle/finetuned-arctic-sentence")
# Load the documents using PyMuPDFLoader
ai_framework_document = PyMuPDFLoader(file_path="https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.600-1.pdf").load()
ai_blueprint_document = PyMuPDFLoader(file_path="https://www.whitehouse.gov/wp-content/uploads/2022/10/Blueprint-for-an-AI-Bill-of-Rights.pdf").load()
# Metadata generator function to add metadata to documents
def metadata_generator(document, name):
fixed_text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=100,
separators=["\n\n", "\n", ".", "!", "?"]
)
collection = fixed_text_splitter.split_documents(document)
for doc in collection:
doc.metadata["source"] = name
return collection
# Generate metadata for the loaded documents
recursive_framework_document = metadata_generator(ai_framework_document, "AI Framework")
recursive_blueprint_document = metadata_generator(ai_blueprint_document, "AI Blueprint")
combined_documents = recursive_framework_document + recursive_blueprint_document
# Combine the content of the documents
ai_framework_text = "".join([doc.page_content for doc in ai_framework_document])
ai_blueprint_text = "".join([doc.page_content for doc in ai_blueprint_document])
# Pass the custom embedding model to Qdrant to create a vectorstore
vectorstore = Qdrant.from_documents(
documents=combined_documents, # List of documents
embedding=embedding_model, # Custom Langchain wrapper for SentenceTransformer
location=":memory:",
collection_name="ai_policy"
)
# Set up the retriever
retriever = vectorstore.as_retriever()
# LLM configuration
llm = ChatOpenAI(model="gpt-4o-mini")
# Define the RAG (Retrieval-Augmented Generation) prompt template
RAG_PROMPT = """\
You are an AI Policy Expert.
Given a provided context and question, you must answer the question based only on context.
Think through your answer carefully and step by step.
Context: {context}
Question: {question}
"""
rag_prompt = ChatPromptTemplate.from_template(RAG_PROMPT)
# Define the retrieval-augmented QA chain
retrieval_augmented_qa_chain = (
{"context": itemgetter("question") | retriever, "question": itemgetter("question")}
| RunnablePassthrough.assign(context=itemgetter("context"))
| {"response": rag_prompt | llm, "context": itemgetter("context")}
)
# Chainlit event handler for receiving messages
@cl.on_message
async def handle_message(message):
try:
# Process the incoming question using the RAG chain
result = retrieval_augmented_qa_chain.invoke({"question": message.content})
# Create a new message for the response
response_message = cl.Message(content=result["response"].content)
# Send the response back to the user
await response_message.send()
except Exception as e:
# Handle any exception and log it or send a response back to the user
error_message = cl.Message(content=f"An error occurred: {str(e)}")
await error_message.send()
print(f"Error occurred: {e}")
# Run the Chainlit server
if __name__ == "__main__":
try:
cl.run()
except Exception as e:
print(f"Server error occurred: {e}")
|