Cheselle's picture
Update app.py
b085e51 verified
import re
from langchain_openai import OpenAIEmbeddings
from langchain_openai import ChatOpenAI
from langchain_openai.embeddings import OpenAIEmbeddings
from langchain.prompts import ChatPromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import StrOutputParser
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_community.vectorstores import Qdrant
from langchain_core.runnables import RunnablePassthrough, RunnableParallel
from langchain_core.documents import Document
from operator import itemgetter
import os
from dotenv import load_dotenv
import chainlit as cl
from langchain.embeddings.base import Embeddings
from sentence_transformers import SentenceTransformer
# Load environment variables
load_dotenv()
# Custom wrapper for SentenceTransformer to work with Langchain
class LangchainSentenceTransformerEmbeddings(Embeddings):
def __init__(self, model_name: str):
self.model = SentenceTransformer(model_name)
def embed_documents(self, texts: list[str]) -> list[list[float]]:
# Encode the documents using SentenceTransformer's encode method
return self.model.encode(texts)
def embed_query(self, text: str) -> list[float]:
# Encode a single query using SentenceTransformer's encode method
return self.model.encode([text])[0]
# Initialize the custom embedding model
embedding_model = LangchainSentenceTransformerEmbeddings("Cheselle/finetuned-arctic-sentence")
# Load the documents using PyMuPDFLoader
ai_framework_document = PyMuPDFLoader(file_path="https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.600-1.pdf").load()
ai_blueprint_document = PyMuPDFLoader(file_path="https://www.whitehouse.gov/wp-content/uploads/2022/10/Blueprint-for-an-AI-Bill-of-Rights.pdf").load()
# Metadata generator function to add metadata to documents
def metadata_generator(document, name):
fixed_text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=100,
separators=["\n\n", "\n", ".", "!", "?"]
)
collection = fixed_text_splitter.split_documents(document)
for doc in collection:
doc.metadata["source"] = name
return collection
# Generate metadata for the loaded documents
recursive_framework_document = metadata_generator(ai_framework_document, "AI Framework")
recursive_blueprint_document = metadata_generator(ai_blueprint_document, "AI Blueprint")
combined_documents = recursive_framework_document + recursive_blueprint_document
# Combine the content of the documents
ai_framework_text = "".join([doc.page_content for doc in ai_framework_document])
ai_blueprint_text = "".join([doc.page_content for doc in ai_blueprint_document])
# Pass the custom embedding model to Qdrant to create a vectorstore
vectorstore = Qdrant.from_documents(
documents=combined_documents, # List of documents
embedding=embedding_model, # Custom Langchain wrapper for SentenceTransformer
location=":memory:",
collection_name="ai_policy"
)
# Set up the retriever
retriever = vectorstore.as_retriever()
# LLM configuration
llm = ChatOpenAI(model="gpt-4o-mini")
# Define the RAG (Retrieval-Augmented Generation) prompt template
RAG_PROMPT = """\
You are an AI Policy Expert.
Given a provided context and question, you must answer the question based only on context.
Think through your answer carefully and step by step.
Context: {context}
Question: {question}
"""
rag_prompt = ChatPromptTemplate.from_template(RAG_PROMPT)
# Define the retrieval-augmented QA chain
retrieval_augmented_qa_chain = (
{"context": itemgetter("question") | retriever, "question": itemgetter("question")}
| RunnablePassthrough.assign(context=itemgetter("context"))
| {"response": rag_prompt | llm, "context": itemgetter("context")}
)
# Chainlit event handler for receiving messages
@cl.on_message
async def handle_message(message):
try:
# Process the incoming question using the RAG chain
result = retrieval_augmented_qa_chain.invoke({"question": message.content})
# Create a new message for the response
response_message = cl.Message(content=result["response"].content)
# Send the response back to the user
await response_message.send()
except Exception as e:
# Handle any exception and log it or send a response back to the user
error_message = cl.Message(content=f"An error occurred: {str(e)}")
await error_message.send()
print(f"Error occurred: {e}")
# Run the Chainlit server
if __name__ == "__main__":
try:
cl.run()
except Exception as e:
print(f"Server error occurred: {e}")