Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,131 +1,113 @@
|
|
1 |
-
import re
|
2 |
-
|
3 |
-
from langchain_openai import OpenAIEmbeddings
|
4 |
from langchain_openai import ChatOpenAI
|
5 |
-
from langchain_openai.embeddings import OpenAIEmbeddings
|
6 |
-
|
7 |
from langchain.prompts import ChatPromptTemplate
|
8 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
from langchain.schema import StrOutputParser
|
10 |
-
|
|
|
|
|
|
|
|
|
11 |
from langchain_community.document_loaders import PyMuPDFLoader
|
|
|
|
|
12 |
from langchain_community.vectorstores import Qdrant
|
13 |
-
|
14 |
from langchain_core.runnables import RunnablePassthrough, RunnableParallel
|
15 |
-
from langchain_core.documents import Document
|
16 |
-
|
17 |
-
from operator import itemgetter
|
18 |
-
import os
|
19 |
-
from dotenv import load_dotenv
|
20 |
import chainlit as cl
|
|
|
|
|
21 |
|
22 |
load_dotenv()
|
23 |
|
|
|
24 |
|
25 |
-
|
26 |
-
|
|
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
fixed_text_splitter = RecursiveCharacterTextSplitter(
|
31 |
chunk_size=500,
|
32 |
chunk_overlap=100,
|
33 |
separators=["\n\n", "\n", ".", "!", "?"]
|
34 |
)
|
35 |
-
collection = fixed_text_splitter.split_documents(document)
|
36 |
-
for doc in collection:
|
37 |
-
doc.metadata["source"] = name
|
38 |
-
return collection
|
39 |
-
|
40 |
-
recursive_framework_document = metadata_generator(ai_framework_document, "AI Framework")
|
41 |
-
recursive_blueprint_document = metadata_generator(ai_blueprint_document, "AI Blueprint")
|
42 |
-
combined_documents = recursive_framework_document + recursive_blueprint_document
|
43 |
-
|
44 |
-
|
45 |
-
#from transformers import AutoTokenizer, AutoModel
|
46 |
-
#import torch
|
47 |
-
#embeddings = AutoModel.from_pretrained("Cheselle/finetuned-arctic-sentence")
|
48 |
-
#tokenizer = AutoTokenizer.from_pretrained("Cheselle/finetuned-arctic-sentence")
|
49 |
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
# Now you can use these text variables
|
57 |
|
|
|
58 |
|
|
|
|
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
66 |
|
67 |
-
vectorstore = Qdrant.from_documents(
|
68 |
-
documents=combined_documents,
|
69 |
-
embedding=lambda docs: embedding_model.encode([doc.page_content for doc in docs]),
|
70 |
-
#embedding=embedding_model,
|
71 |
-
#embedding=embeddings,
|
72 |
-
location=":memory:",
|
73 |
-
collection_name="ai_policy"
|
74 |
-
)
|
75 |
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
79 |
-
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
Think through your answer carefully and step by step.
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
""
|
|
|
89 |
|
90 |
-
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
# "question" : populated by getting the value of the "question" key
|
95 |
-
# "context" : populated by getting the value of the "question" key and chaining it into the base_retriever
|
96 |
-
{"context": itemgetter("question") | retriever, "question": itemgetter("question")}
|
97 |
-
# "context" : is assigned to a RunnablePassthrough object (will not be called or considered in the next step)
|
98 |
-
# by getting the value of the "context" key from the previous step
|
99 |
-
| RunnablePassthrough.assign(context=itemgetter("context"))
|
100 |
-
# "response" : the "context" and "question" values are used to format our prompt object and then piped
|
101 |
-
# into the LLM and stored in a key called "response"
|
102 |
-
# "context" : populated by getting the value of the "context" key from the previous step
|
103 |
-
| {"response": rag_prompt | llm, "context": itemgetter("context")}
|
104 |
-
)
|
105 |
|
106 |
-
#
|
|
|
|
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
try:
|
111 |
-
# Process the incoming question using the RAG chain
|
112 |
-
result = retrieval_augmented_qa_chain.invoke({"question": message.content})
|
113 |
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
116 |
|
117 |
-
|
118 |
-
await response_message.send()
|
119 |
-
|
120 |
-
except Exception as e:
|
121 |
-
# Handle any exception and log it or send a response back to the user
|
122 |
-
error_message = cl.Message(content=f"An error occurred: {str(e)}")
|
123 |
-
await error_message.send()
|
124 |
-
print(f"Error occurred: {e}")
|
125 |
-
|
126 |
-
# Run the ChainLit server
|
127 |
-
if __name__ == "__main__":
|
128 |
-
try:
|
129 |
-
cl.run()
|
130 |
-
except Exception as e:
|
131 |
-
print(f"Server error occurred: {e}")
|
|
|
|
|
|
|
|
|
1 |
from langchain_openai import ChatOpenAI
|
|
|
|
|
2 |
from langchain.prompts import ChatPromptTemplate
|
|
|
3 |
from langchain.schema import StrOutputParser
|
4 |
+
from langchain.schema.runnable import Runnable
|
5 |
+
from langchain.schema.runnable.config import RunnableConfig
|
6 |
+
from typing import cast
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
import os
|
9 |
from langchain_community.document_loaders import PyMuPDFLoader
|
10 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
+
from langchain_openai.embeddings import OpenAIEmbeddings
|
12 |
from langchain_community.vectorstores import Qdrant
|
|
|
13 |
from langchain_core.runnables import RunnablePassthrough, RunnableParallel
|
|
|
|
|
|
|
|
|
|
|
14 |
import chainlit as cl
|
15 |
+
from pathlib import Path
|
16 |
+
from sentence_transformers import SentenceTransformer # Ensure this import is correct
|
17 |
|
18 |
load_dotenv()
|
19 |
|
20 |
+
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
|
21 |
|
22 |
+
@cl.on_chat_start
|
23 |
+
async def on_chat_start():
|
24 |
+
model = ChatOpenAI(streaming=True)
|
25 |
|
26 |
+
# Load documents
|
27 |
+
ai_framework_document = PyMuPDFLoader(file_path="https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.600-1.pdf").load()
|
28 |
+
ai_blueprint_document = PyMuPDFLoader(file_path="https://www.whitehouse.gov/wp-content/uploads/2022/10/Blueprint-for-an-AI-Bill-of-Rights.pdf").load()
|
29 |
+
|
30 |
+
RAG_PROMPT = """\
|
31 |
+
Given a provided context and question, you must answer the question based only on context.
|
32 |
+
|
33 |
+
Context: {context}
|
34 |
+
Question: {question}
|
35 |
+
"""
|
36 |
+
|
37 |
+
rag_prompt = ChatPromptTemplate.from_template(RAG_PROMPT)
|
38 |
|
39 |
+
sentence_text_splitter = RecursiveCharacterTextSplitter(
|
|
|
40 |
chunk_size=500,
|
41 |
chunk_overlap=100,
|
42 |
separators=["\n\n", "\n", ".", "!", "?"]
|
43 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
def metadata_generator(document, name, splitter):
|
46 |
+
collection = splitter.split_documents(document)
|
47 |
+
for doc in collection:
|
48 |
+
doc.metadata["source"] = name
|
49 |
+
return collection
|
50 |
|
51 |
+
sentence_framework = metadata_generator(ai_framework_document, "AI Framework", sentence_text_splitter)
|
52 |
+
sentence_blueprint = metadata_generator(ai_blueprint_document, "AI Blueprint", sentence_text_splitter)
|
|
|
|
|
53 |
|
54 |
+
sentence_combined_documents = sentence_framework + sentence_blueprint
|
55 |
|
56 |
+
# Initialize the SentenceTransformer model properly
|
57 |
+
embedding_model = SentenceTransformer('Cheselle/finetuned-arctic-sentence')
|
58 |
|
59 |
+
# Create the Qdrant vector store using the initialized embedding model
|
60 |
+
sentence_vectorstore = Qdrant.from_documents(
|
61 |
+
documents=sentence_combined_documents,
|
62 |
+
embedding=embedding_model, # Ensure this is an instance
|
63 |
+
location=":memory:",
|
64 |
+
collection_name="AI Policy"
|
65 |
+
)
|
66 |
|
67 |
+
sentence_retriever = sentence_vectorstore.as_retriever()
|
68 |
+
|
69 |
+
# Set the retriever and prompt into session for reuse
|
70 |
+
cl.user_session.set("runnable", model)
|
71 |
+
cl.user_session.set("retriever", sentence_retriever)
|
72 |
+
cl.user_session.set("prompt_template", rag_prompt)
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
@cl.on_message
|
76 |
+
async def on_message(message: cl.Message):
|
77 |
+
# Get the stored model, retriever, and prompt
|
78 |
+
model = cast(ChatOpenAI, cl.user_session.get("runnable"))
|
79 |
+
retriever = cl.user_session.get("retriever")
|
80 |
+
prompt_template = cl.user_session.get("prompt_template")
|
81 |
|
82 |
+
# Log the message content
|
83 |
+
print(f"Received message: {message.content}")
|
84 |
|
85 |
+
# Retrieve relevant context from documents based on the user's message
|
86 |
+
relevant_docs = retriever.get_relevant_documents(message.content)
|
87 |
+
print(f"Retrieved {len(relevant_docs)} documents.")
|
|
|
88 |
|
89 |
+
if not relevant_docs:
|
90 |
+
print("No relevant documents found.")
|
91 |
+
await cl.Message(content="Sorry, I couldn't find any relevant documents.").send()
|
92 |
+
return
|
93 |
|
94 |
+
context = "\n\n".join([doc.page_content for doc in relevant_docs])
|
95 |
|
96 |
+
# Log the context to check
|
97 |
+
print(f"Context: {context}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
+
# Construct the final RAG prompt
|
100 |
+
final_prompt = prompt_template.format(context=context, question=message.content)
|
101 |
+
print(f"Final prompt: {final_prompt}")
|
102 |
|
103 |
+
# Initialize a streaming message
|
104 |
+
msg = cl.Message(content="")
|
|
|
|
|
|
|
105 |
|
106 |
+
# Stream the response from the model
|
107 |
+
async for chunk in model.astream(
|
108 |
+
final_prompt,
|
109 |
+
config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
|
110 |
+
):
|
111 |
+
await msg.stream_token(chunk.content)
|
112 |
|
113 |
+
await msg.send()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|