Colorization / app.py
ChiKyi's picture
update visible
3477013
import torch
import numpy as np
import PIL
from PIL import Image
from torchvision import transforms
from matplotlib import pyplot as plt
import gradio as gr
import transformers
transformers.utils.move_cache()
from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel
from transformers import BlipProcessor, BlipForConditionalGeneration
from accelerate import Accelerator
torch.set_num_threads(2)
import warnings
warnings.filterwarnings("ignore")
from models import MainModel, UNetAuto, Autoencoder
from utils import lab_to_rgb, build_res_unet, build_mobilenet_unet # Utility to convert LAB to RGB
from stable import blip_image_captioning, apply_color
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Stable diffusion
accelerator = Accelerator(
mixed_precision="fp16"
)
controlnet = ControlNetModel.from_pretrained(
pretrained_model_name_or_path="nickpai/sdxl_light_caption_output",
subfolder="checkpoint-30000/controlnet",
)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
pretrained_model_name_or_path="stabilityai/stable-diffusion-xl-base-1.0",
controlnet=controlnet
)
blip_processor = BlipProcessor.from_pretrained(
"Salesforce/blip-image-captioning-large",
)
blip_generator = BlipForConditionalGeneration.from_pretrained(
"Salesforce/blip-image-captioning-large",
)
pipe.to(accelerator.device)
blip_generator.to(accelerator.device)
def colorize_image_sdxl(image, positive_prompt=None, negative_prompt=None, caption_generate=True, seed=123, infer_steps=5):
image = PIL.Image.fromarray(image)
torch.cuda.empty_cache()
if caption_generate:
caption = blip_image_captioning(image=image, device=accelerator.device, processor=blip_processor, generator=blip_generator)
else:
caption = ""
original_size = image.size
control_image = image.convert("L").convert("RGB").resize((512, 512))
prompt = [positive_prompt + ", " + caption]
colorized_image = pipe(prompt=prompt,
num_inference_steps=infer_steps,
generator=torch.manual_seed(seed),
image=control_image,
negative_prompt=negative_prompt).images[0]
result_image = apply_color(control_image, colorized_image)
result_image = result_image.resize(original_size)
return result_image, caption
# Hàm load models cho autoencoder và gan
def load_autoencoder_model(auto_model_path):
unet = UNetAuto(in_channels=1, out_channels=2).to(device)
model = Autoencoder(unet).to(device)
model.load_state_dict(torch.load(auto_model_path, map_location=device))
model.to(device)
model.eval()
return model
def load_model(generator_model_path, colorization_model_path, model_type='resnet'):
if model_type == 'resnet':
net_G = build_res_unet(n_input=1, n_output=2, size=256)
elif model_type == 'mobilenet':
net_G = build_mobilenet_unet(n_input=1, n_output=2, size=256)
net_G.load_state_dict(torch.load(generator_model_path, map_location=device))
model = MainModel(net_G=net_G)
model.load_state_dict(torch.load(colorization_model_path, map_location=device))
model.to(device)
model.eval()
return model
resnet_model = load_model(
"weight/pascal_res18-unet.pt",
"weight/pascal_final_model_weights.pt",
model_type='resnet'
)
mobilenet_model = load_model(
"weight/mobile-unet.pt",
"weight/mobile_pascal_final_model_weights.pt",
model_type='mobilenet'
)
autoencoder_model = load_autoencoder_model("weight/autoencoder.pt")
# Transformations
def preprocess_image(image):
image = image.resize((256, 256))
image = transforms.ToTensor()(image)[:1] * 2. - 1.
return image
def postprocess_image(grayscale, prediction, original_size):
# Convert Lab back to RGB and resize to the original image size
colorized_image = lab_to_rgb(grayscale.unsqueeze(0), prediction.cpu())[0]
colorized_image = Image.fromarray((colorized_image * 255).astype("uint8"))
return colorized_image.resize(original_size)
# Prediction function with output control
def colorize_image(input_image, mode):
grayscale_image = Image.fromarray(input_image).convert('L')
original_size = grayscale_image.size # Store original size
grayscale = preprocess_image(grayscale_image).to(device)
with torch.no_grad():
resnet_output = resnet_model.net_G(grayscale.unsqueeze(0))
mobilenet_output = mobilenet_model.net_G(grayscale.unsqueeze(0))
autoencoder_output = autoencoder_model(grayscale.unsqueeze(0))
# Resize outputs to match the original size
resnet_colorized = postprocess_image(grayscale, resnet_output, original_size)
mobilenet_colorized = postprocess_image(grayscale, mobilenet_output, original_size)
autoencoder_colorized = postprocess_image(grayscale, autoencoder_output, original_size)
if mode == "ResNet":
return resnet_colorized, None, None
elif mode == "MobileNet":
return None, mobilenet_colorized, None
elif mode == "Unet":
return None, None, autoencoder_colorized
elif mode == "Comparison":
return resnet_colorized, mobilenet_colorized, autoencoder_colorized
def gradio_interface():
with gr.Blocks() as app:
with gr.Tab("Prompt-Free"):
with gr.Blocks():
input_image = gr.Image(type="numpy", label="Upload an Image")
output_modes = gr.Radio(
choices=["ResNet", "MobileNet", "Unet", "Comparison"],
value="ResNet",
label="Output Mode"
)
submit_button = gr.Button("Submit")
with gr.Row(): # Place output images in a single row
resnet_output = gr.Image(label="Colorized Image (ResNet18)", visible=False)
mobilenet_output = gr.Image(label="Colorized Image (MobileNet)", visible=False)
autoencoder_output = gr.Image(label="Colorized Image (Unet)", visible=False)
def update_visibility(mode):
if mode == "ResNet":
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
elif mode == "MobileNet":
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
elif mode == "Unet":
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
elif mode == "Comparison":
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
output_modes.change(
fn=update_visibility,
inputs=[output_modes],
outputs=[resnet_output, mobilenet_output, autoencoder_output]
)
submit_button.click(
fn=colorize_image,
inputs=[input_image, output_modes],
outputs=[resnet_output, mobilenet_output, autoencoder_output]
)
with gr.Tab("Prompt_Guided(ControlNet-SDXL)"):
with gr.Blocks():
with gr.Row():
with gr.Column(scale=1):
sd_image = gr.Image(label="Upload a Color Image")
positive_prompt = gr.Textbox(label="Positive Prompt", placeholder="Text for positive prompt")
negative_prompt = gr.Textbox(
value="low quality, bad quality, low contrast, black and white, bw, monochrome, grainy, blurry, historical, restored, desaturate",
label="Negative Prompt", placeholder="Text for negative prompt"
)
generate_caption = gr.Checkbox(label="Generate Caption?", value=True)
seed = gr.Number(label="Seed", value=123, precision=0)
inference_steps = gr.Number(label="Inference Steps", value=5, precision=0)
submit_sd = gr.Button("Generate")
with gr.Column(scale=1):
sd_output_image = gr.Image(label="Colorized Image")
sd_caption = gr.Textbox(label="Captioning Result", show_copy_button=True, visible=True)
submit_sd.click(
fn=colorize_image_sdxl,
inputs=[sd_image, positive_prompt, negative_prompt, generate_caption, seed, inference_steps],
outputs=[sd_output_image, sd_caption]
)
return app
# Launch
if __name__ == "__main__":
gradio_interface().launch()