File size: 8,839 Bytes
cf2db44
68fafaa
4c6161c
cf2db44
 
 
 
 
e5282e5
 
 
 
 
 
618acb1
e5282e5
 
 
 
 
68fafaa
 
e5282e5
cf2db44
 
 
e5282e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7cfdf9
e5282e5
 
 
 
 
 
 
 
 
 
 
 
 
d7cfdf9
 
e5282e5
 
 
 
d7cfdf9
e5282e5
 
 
68fafaa
 
 
 
 
 
cf2db44
68fafaa
 
 
 
 
cf2db44
 
 
 
 
 
 
 
 
 
68fafaa
 
cf2db44
 
68fafaa
 
 
 
 
 
e5282e5
cf2db44
 
 
 
68fafaa
cf2db44
 
11f1268
 
 
 
 
cf2db44
68fafaa
 
 
11f1268
68fafaa
cf2db44
 
 
68fafaa
e5282e5
cf2db44
11f1268
 
 
e5282e5
cf2db44
68fafaa
 
 
 
01c3f1c
e5282e5
68fafaa
e5282e5
68fafaa
cf2db44
68fafaa
e5282e5
618acb1
e5282e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
618acb1
e5282e5
3477013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5282e5
3477013
 
 
e5282e5
 
 
 
 
68fafaa
 
 
 
11f1268
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import torch
import numpy as np
import PIL
from PIL import Image
from torchvision import transforms
from matplotlib import pyplot as plt
import gradio as gr

import transformers
transformers.utils.move_cache()

from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel
from transformers import BlipProcessor, BlipForConditionalGeneration
from accelerate import Accelerator
torch.set_num_threads(2)

import warnings
warnings.filterwarnings("ignore") 


from models import MainModel, UNetAuto, Autoencoder  
from utils import lab_to_rgb, build_res_unet, build_mobilenet_unet  # Utility to convert LAB to RGB
from stable import blip_image_captioning, apply_color

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')


# Stable diffusion

accelerator = Accelerator(
    mixed_precision="fp16"
)

controlnet = ControlNetModel.from_pretrained(
    pretrained_model_name_or_path="nickpai/sdxl_light_caption_output",
    subfolder="checkpoint-30000/controlnet",
)

pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
    pretrained_model_name_or_path="stabilityai/stable-diffusion-xl-base-1.0",
    controlnet=controlnet
)
blip_processor = BlipProcessor.from_pretrained(
    "Salesforce/blip-image-captioning-large",
)
blip_generator = BlipForConditionalGeneration.from_pretrained(
    "Salesforce/blip-image-captioning-large",
)

pipe.to(accelerator.device)
blip_generator.to(accelerator.device)

def colorize_image_sdxl(image, positive_prompt=None, negative_prompt=None, caption_generate=True, seed=123, infer_steps=5):
    image = PIL.Image.fromarray(image)

    torch.cuda.empty_cache()
    if caption_generate:
        caption = blip_image_captioning(image=image, device=accelerator.device, processor=blip_processor, generator=blip_generator)
    else:
        caption = ""

    original_size = image.size
    control_image = image.convert("L").convert("RGB").resize((512, 512))
    prompt = [positive_prompt + ", " + caption]
    
    colorized_image = pipe(prompt=prompt,
                           num_inference_steps=infer_steps, 
                           generator=torch.manual_seed(seed),
                           image=control_image,
                           negative_prompt=negative_prompt).images[0]
    result_image = apply_color(control_image, colorized_image)
    result_image = result_image.resize(original_size)
    return result_image, caption

# Hàm load models cho autoencoder và gan
def load_autoencoder_model(auto_model_path):
    unet = UNetAuto(in_channels=1, out_channels=2).to(device)
    model = Autoencoder(unet).to(device)
    model.load_state_dict(torch.load(auto_model_path, map_location=device))
    model.to(device)
    model.eval()
    return model

def load_model(generator_model_path, colorization_model_path, model_type='resnet'):
    if model_type == 'resnet':
        net_G = build_res_unet(n_input=1, n_output=2, size=256)
    elif model_type == 'mobilenet':
        net_G = build_mobilenet_unet(n_input=1, n_output=2, size=256)
    
    net_G.load_state_dict(torch.load(generator_model_path, map_location=device))
    model = MainModel(net_G=net_G)
    model.load_state_dict(torch.load(colorization_model_path, map_location=device))
    model.to(device)
    model.eval()
    return model

resnet_model = load_model(
    "weight/pascal_res18-unet.pt",
    "weight/pascal_final_model_weights.pt",
    model_type='resnet'
)

mobilenet_model = load_model(
    "weight/mobile-unet.pt",
    "weight/mobile_pascal_final_model_weights.pt",
    model_type='mobilenet'
)

autoencoder_model = load_autoencoder_model("weight/autoencoder.pt")

# Transformations
def preprocess_image(image):
    image = image.resize((256, 256))
    image = transforms.ToTensor()(image)[:1] * 2. - 1.
    return image

def postprocess_image(grayscale, prediction, original_size):
    # Convert Lab back to RGB and resize to the original image size
    colorized_image = lab_to_rgb(grayscale.unsqueeze(0), prediction.cpu())[0]
    colorized_image = Image.fromarray((colorized_image * 255).astype("uint8"))
    return colorized_image.resize(original_size)

# Prediction function with output control
def colorize_image(input_image, mode):
    grayscale_image = Image.fromarray(input_image).convert('L')
    original_size = grayscale_image.size  # Store original size
    grayscale = preprocess_image(grayscale_image).to(device)
    
    with torch.no_grad():
        resnet_output = resnet_model.net_G(grayscale.unsqueeze(0))
        mobilenet_output = mobilenet_model.net_G(grayscale.unsqueeze(0))
        autoencoder_output = autoencoder_model(grayscale.unsqueeze(0))
    
    # Resize outputs to match the original size
    resnet_colorized = postprocess_image(grayscale, resnet_output, original_size)
    mobilenet_colorized = postprocess_image(grayscale, mobilenet_output, original_size)
    autoencoder_colorized = postprocess_image(grayscale, autoencoder_output, original_size)
    
    if mode == "ResNet":
        return resnet_colorized, None, None
    elif mode == "MobileNet":
        return None, mobilenet_colorized, None
    elif mode == "Unet":
        return None, None, autoencoder_colorized
    elif mode == "Comparison":
        return resnet_colorized, mobilenet_colorized, autoencoder_colorized


def gradio_interface():
    with gr.Blocks() as app:
        with gr.Tab("Prompt-Free"):
            with gr.Blocks():
                input_image = gr.Image(type="numpy", label="Upload an Image")
                output_modes = gr.Radio(
                    choices=["ResNet", "MobileNet", "Unet", "Comparison"],
                    value="ResNet",
                    label="Output Mode"
                )
                
                submit_button = gr.Button("Submit")

                with gr.Row():  # Place output images in a single row
                    resnet_output = gr.Image(label="Colorized Image (ResNet18)", visible=False)
                    mobilenet_output = gr.Image(label="Colorized Image (MobileNet)", visible=False)
                    autoencoder_output = gr.Image(label="Colorized Image (Unet)", visible=False)

                def update_visibility(mode):
                    if mode == "ResNet":
                        return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
                    elif mode == "MobileNet":
                        return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
                    elif mode == "Unet":
                        return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
                    elif mode == "Comparison":
                        return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)

                output_modes.change(
                    fn=update_visibility,
                    inputs=[output_modes],
                    outputs=[resnet_output, mobilenet_output, autoencoder_output]
                )

                submit_button.click(
                    fn=colorize_image,
                    inputs=[input_image, output_modes],
                    outputs=[resnet_output, mobilenet_output, autoencoder_output]
                )

        with gr.Tab("Prompt_Guided(ControlNet-SDXL)"):
            with gr.Blocks():
                with gr.Row():  
                    with gr.Column(scale=1):
                        sd_image = gr.Image(label="Upload a Color Image")
                        positive_prompt = gr.Textbox(label="Positive Prompt", placeholder="Text for positive prompt")
                        negative_prompt = gr.Textbox(
                           value="low quality, bad quality, low contrast, black and white, bw, monochrome, grainy, blurry, historical, restored, desaturate",
                           label="Negative Prompt", placeholder="Text for negative prompt"
                         )
                        generate_caption = gr.Checkbox(label="Generate Caption?", value=True)
                        seed = gr.Number(label="Seed", value=123, precision=0)
                        inference_steps = gr.Number(label="Inference Steps", value=5, precision=0)
                        submit_sd = gr.Button("Generate")

            
                    with gr.Column(scale=1):
                        sd_output_image = gr.Image(label="Colorized Image")
                        sd_caption = gr.Textbox(label="Captioning Result", show_copy_button=True, visible=True)

        
                submit_sd.click(
                   fn=colorize_image_sdxl,
                   inputs=[sd_image, positive_prompt, negative_prompt, generate_caption, seed, inference_steps],
                   outputs=[sd_output_image, sd_caption]
                )

    return app




# Launch
if __name__ == "__main__":
    gradio_interface().launch()