Spaces:
Sleeping
Sleeping
add new model
Browse files
app.py
CHANGED
@@ -5,13 +5,73 @@ from torchvision import transforms
|
|
5 |
from matplotlib import pyplot as plt
|
6 |
import gradio as gr
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
from models import MainModel, UNetAuto, Autoencoder
|
9 |
from utils import lab_to_rgb, build_res_unet, build_mobilenet_unet # Utility to convert LAB to RGB
|
|
|
10 |
|
11 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
12 |
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
unet = UNetAuto(in_channels=1, out_channels=2).to(device)
|
16 |
model = Autoencoder(unet).to(device)
|
17 |
model.load_state_dict(torch.load(auto_model_path, map_location=device))
|
@@ -44,7 +104,7 @@ mobilenet_model = load_model(
|
|
44 |
model_type='mobilenet'
|
45 |
)
|
46 |
|
47 |
-
|
48 |
|
49 |
# Transformations
|
50 |
def preprocess_image(image):
|
@@ -67,68 +127,90 @@ def colorize_image(input_image, mode):
|
|
67 |
with torch.no_grad():
|
68 |
resnet_output = resnet_model.net_G(grayscale.unsqueeze(0))
|
69 |
mobilenet_output = mobilenet_model.net_G(grayscale.unsqueeze(0))
|
70 |
-
|
71 |
|
72 |
# Resize outputs to match the original size
|
73 |
resnet_colorized = postprocess_image(grayscale, resnet_output, original_size)
|
74 |
mobilenet_colorized = postprocess_image(grayscale, mobilenet_output, original_size)
|
75 |
-
|
76 |
|
77 |
if mode == "ResNet":
|
78 |
return resnet_colorized, None, None
|
79 |
elif mode == "MobileNet":
|
80 |
return None, mobilenet_colorized, None
|
81 |
elif mode == "Unet":
|
82 |
-
return None, None,
|
83 |
elif mode == "Comparison":
|
84 |
-
return resnet_colorized, mobilenet_colorized,
|
85 |
|
|
|
|
|
|
|
|
|
86 |
|
87 |
-
# Gradio Interface
|
88 |
def gradio_interface():
|
89 |
-
with gr.Blocks() as
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
|
134 |
# Launch
|
|
|
5 |
from matplotlib import pyplot as plt
|
6 |
import gradio as gr
|
7 |
|
8 |
+
import transformers
|
9 |
+
transformers.utils.move_cache()
|
10 |
+
|
11 |
+
from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel
|
12 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
13 |
+
from accelerate import Accelerator
|
14 |
+
|
15 |
+
import warnings
|
16 |
+
warnings.filterwarnings("ignore")
|
17 |
+
|
18 |
+
|
19 |
from models import MainModel, UNetAuto, Autoencoder
|
20 |
from utils import lab_to_rgb, build_res_unet, build_mobilenet_unet # Utility to convert LAB to RGB
|
21 |
+
from stable import blip_image_captioning, apply_color
|
22 |
|
23 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
24 |
|
25 |
+
|
26 |
+
# Stable diffusion
|
27 |
+
|
28 |
+
accelerator = Accelerator(
|
29 |
+
mixed_precision="fp16"
|
30 |
+
)
|
31 |
+
|
32 |
+
controlnet = ControlNetModel.from_pretrained(
|
33 |
+
pretrained_model_name_or_path="nickpai/sdxl_light_caption_output",
|
34 |
+
subfolder="checkpoint-30000/controlnet",
|
35 |
+
)
|
36 |
+
|
37 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
38 |
+
pretrained_model_name_or_path="stabilityai/stable-diffusion-xl-base-1.0",
|
39 |
+
controlnet=controlnet
|
40 |
+
)
|
41 |
+
blip_processor = BlipProcessor.from_pretrained(
|
42 |
+
"Salesforce/blip-image-captioning-large",
|
43 |
+
)
|
44 |
+
blip_generator = BlipForConditionalGeneration.from_pretrained(
|
45 |
+
"Salesforce/blip-image-captioning-large",
|
46 |
+
)
|
47 |
+
|
48 |
+
pipe.to(accelerator.device)
|
49 |
+
blip_generator.to(accelerator.device)
|
50 |
+
|
51 |
+
def colorize_single_image(image, positive_prompt, negative_prompt, caption_generate):
|
52 |
+
image = PIL.Image.fromarray(image)
|
53 |
+
|
54 |
+
torch.cuda.empty_cache()
|
55 |
+
if caption_generate:
|
56 |
+
caption = blip_image_captioning(image=image, device=accelerator.device, processor=blip_processor, generator=blip_generator)
|
57 |
+
else:
|
58 |
+
caption = ""
|
59 |
+
|
60 |
+
original_size = image.size
|
61 |
+
control_image = image.convert("L").convert("RGB").resize((512, 512))
|
62 |
+
prompt = [positive_prompt + ", " + caption]
|
63 |
+
|
64 |
+
colorized_image = pipe(prompt=prompt,
|
65 |
+
num_inference_steps=5,
|
66 |
+
generator=torch.manual_seed(0),
|
67 |
+
image=control_image,
|
68 |
+
negative_prompt=negative_prompt).images[0]
|
69 |
+
result_image = apply_color(control_image, colorized_image)
|
70 |
+
result_image = result_image.resize(original_size)
|
71 |
+
return result_image, caption if caption_generate else gr.update(visible=False)
|
72 |
+
|
73 |
+
# Hàm load models cho autoencoder và gan
|
74 |
+
def load_autoencoder_model(auto_model_path):
|
75 |
unet = UNetAuto(in_channels=1, out_channels=2).to(device)
|
76 |
model = Autoencoder(unet).to(device)
|
77 |
model.load_state_dict(torch.load(auto_model_path, map_location=device))
|
|
|
104 |
model_type='mobilenet'
|
105 |
)
|
106 |
|
107 |
+
autoencoder_model = load_autoencoder_model("weight/autoencoder.pt")
|
108 |
|
109 |
# Transformations
|
110 |
def preprocess_image(image):
|
|
|
127 |
with torch.no_grad():
|
128 |
resnet_output = resnet_model.net_G(grayscale.unsqueeze(0))
|
129 |
mobilenet_output = mobilenet_model.net_G(grayscale.unsqueeze(0))
|
130 |
+
autoencoder_output = autoencoder_model(grayscale.unsqueeze(0))
|
131 |
|
132 |
# Resize outputs to match the original size
|
133 |
resnet_colorized = postprocess_image(grayscale, resnet_output, original_size)
|
134 |
mobilenet_colorized = postprocess_image(grayscale, mobilenet_output, original_size)
|
135 |
+
autoencoder_colorized = postprocess_image(grayscale, autoencoder_output, original_size)
|
136 |
|
137 |
if mode == "ResNet":
|
138 |
return resnet_colorized, None, None
|
139 |
elif mode == "MobileNet":
|
140 |
return None, mobilenet_colorized, None
|
141 |
elif mode == "Unet":
|
142 |
+
return None, None, autoencoder_colorized
|
143 |
elif mode == "Comparison":
|
144 |
+
return resnet_colorized, mobilenet_colorized, autoencoder_colorized
|
145 |
|
146 |
+
def colorize_single_image(input_image, positive_prompt, negative_prompt, generate_caption):
|
147 |
+
|
148 |
+
caption = "Generated Caption Example" if generate_caption else ""
|
149 |
+
return input_image, caption
|
150 |
|
|
|
151 |
def gradio_interface():
|
152 |
+
with gr.Blocks() as app:
|
153 |
+
with gr.Tab("Mode Colorization no Prompting"):
|
154 |
+
with gr.Blocks():
|
155 |
+
input_image = gr.Image(type="numpy", label="Upload an Image")
|
156 |
+
output_modes = gr.Radio(
|
157 |
+
choices=["ResNet", "MobileNet", "Unet", "Comparison"],
|
158 |
+
value="ResNet",
|
159 |
+
label="Output Mode"
|
160 |
+
)
|
161 |
+
|
162 |
+
submit_button = gr.Button("Submit")
|
163 |
+
|
164 |
+
with gr.Row(): # Place output images in a single row
|
165 |
+
resnet_output = gr.Image(label="Colorized Image (ResNet18)", visible=False)
|
166 |
+
mobilenet_output = gr.Image(label="Colorized Image (MobileNet)", visible=False)
|
167 |
+
autoencoder_output = gr.Image(label="Colorized Image (Unet)", visible=False)
|
168 |
+
|
169 |
+
def update_visibility(mode):
|
170 |
+
if mode == "ResNet":
|
171 |
+
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
|
172 |
+
elif mode == "MobileNet":
|
173 |
+
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
|
174 |
+
elif mode == "Unet":
|
175 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
176 |
+
elif mode == "Comparison":
|
177 |
+
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
178 |
+
|
179 |
+
output_modes.change(
|
180 |
+
fn=update_visibility,
|
181 |
+
inputs=[output_modes],
|
182 |
+
outputs=[resnet_output, mobilenet_output, autoencoder_output]
|
183 |
+
)
|
184 |
+
|
185 |
+
submit_button.click(
|
186 |
+
fn=colorize_image,
|
187 |
+
inputs=[input_image, output_modes],
|
188 |
+
outputs=[resnet_output, mobilenet_output, autoencoder_output]
|
189 |
+
)
|
190 |
+
|
191 |
+
with gr.Tab("Stable Diffusion"):
|
192 |
+
with gr.Blocks():
|
193 |
+
sd_image = gr.Image(label="Upload a Color Image")
|
194 |
+
positive_prompt = gr.Textbox(label="Positive Prompt", placeholder="Text for positive prompt")
|
195 |
+
negative_prompt = gr.Textbox(
|
196 |
+
value="low quality, bad quality, low contrast, black and white, bw, monochrome, grainy, blurry, historical, restored, desaturate",
|
197 |
+
label="Negative Prompt", placeholder="Text for negative prompt"
|
198 |
+
)
|
199 |
+
generate_caption = gr.Checkbox(label="Generate Caption?", value=False)
|
200 |
+
submit_sd = gr.Button("Generate")
|
201 |
+
|
202 |
+
sd_output_image = gr.Image(label="Colorized Image")
|
203 |
+
sd_caption = gr.Textbox(label="Captioning Result", show_copy_button=True, visible=False)
|
204 |
+
|
205 |
+
submit_sd.click(
|
206 |
+
fn=colorize_single_image,
|
207 |
+
inputs=[sd_image, positive_prompt, negative_prompt, generate_caption],
|
208 |
+
outputs=[sd_output_image, sd_caption]
|
209 |
+
)
|
210 |
+
|
211 |
+
return app
|
212 |
+
|
213 |
+
|
214 |
|
215 |
|
216 |
# Launch
|
stable.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# for image captioning
|
2 |
+
import PIL
|
3 |
+
import torch
|
4 |
+
from torchvision import transforms
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
import transformers
|
8 |
+
transformers.utils.move_cache()
|
9 |
+
|
10 |
+
from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel
|
11 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
12 |
+
from accelerate import Accelerator
|
13 |
+
|
14 |
+
def remove_unlikely_words(prompt: str) -> str:
|
15 |
+
"""
|
16 |
+
Removes unlikely words from a prompt.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
prompt: The text prompt to be cleaned.
|
20 |
+
|
21 |
+
Returns:
|
22 |
+
The cleaned prompt with unlikely words removed.
|
23 |
+
"""
|
24 |
+
unlikely_words = []
|
25 |
+
|
26 |
+
a1_list = [f'{i}s' for i in range(1900, 2000)]
|
27 |
+
a2_list = [f'{i}' for i in range(1900, 2000)]
|
28 |
+
a3_list = [f'year {i}' for i in range(1900, 2000)]
|
29 |
+
a4_list = [f'circa {i}' for i in range(1900, 2000)]
|
30 |
+
b1_list = [f"{year[0]} {year[1]} {year[2]} {year[3]} s" for year in a1_list]
|
31 |
+
b2_list = [f"{year[0]} {year[1]} {year[2]} {year[3]}" for year in a1_list]
|
32 |
+
b3_list = [f"year {year[0]} {year[1]} {year[2]} {year[3]}" for year in a1_list]
|
33 |
+
b4_list = [f"circa {year[0]} {year[1]} {year[2]} {year[3]}" for year in a1_list]
|
34 |
+
|
35 |
+
words_list = [
|
36 |
+
"black and white,", "black and white", "black & white,", "black & white", "circa",
|
37 |
+
"balck and white,", "monochrome,", "black-and-white,", "black-and-white photography,",
|
38 |
+
"black - and - white photography,", "monochrome bw,", "black white,", "black an white,",
|
39 |
+
"grainy footage,", "grainy footage", "grainy photo,", "grainy photo", "b&w photo",
|
40 |
+
"back and white", "back and white,", "monochrome contrast", "monochrome", "grainy",
|
41 |
+
"grainy photograph,", "grainy photograph", "low contrast,", "low contrast", "b & w",
|
42 |
+
"grainy black-and-white photo,", "bw", "bw,", "grainy black-and-white photo",
|
43 |
+
"b & w,", "b&w,", "b&w!,", "b&w", "black - and - white,", "bw photo,", "grainy photo,",
|
44 |
+
"black-and-white photo,", "black-and-white photo", "black - and - white photography",
|
45 |
+
"b&w photo,", "monochromatic photo,", "grainy monochrome photo,", "monochromatic",
|
46 |
+
"blurry photo,", "blurry,", "blurry photography,", "monochromatic photo",
|
47 |
+
"black - and - white photograph,", "black - and - white photograph", "black on white,",
|
48 |
+
"black on white", "black-and-white", "historical image,", "historical picture,",
|
49 |
+
"historical photo,", "historical photograph,", "archival photo,", "taken in the early",
|
50 |
+
"taken in the late", "taken in the", "historic photograph,", "restored,", "restored",
|
51 |
+
"historical photo", "historical setting,",
|
52 |
+
"historic photo,", "historic", "desaturated!!,", "desaturated!,", "desaturated,", "desaturated",
|
53 |
+
"taken in", "shot on leica", "shot on leica sl2", "sl2",
|
54 |
+
"taken with a leica camera", "taken with a leica camera", "leica sl2", "leica", "setting",
|
55 |
+
"overcast day", "overcast weather", "slight overcast", "overcast",
|
56 |
+
"picture taken in", "photo taken in",
|
57 |
+
", photo", ", photo", ", photo", ", photo", ", photograph",
|
58 |
+
",,", ",,,", ",,,,", " ,", " ,", " ,", " ,",
|
59 |
+
]
|
60 |
+
|
61 |
+
unlikely_words.extend(a1_list)
|
62 |
+
unlikely_words.extend(a2_list)
|
63 |
+
unlikely_words.extend(a3_list)
|
64 |
+
unlikely_words.extend(a4_list)
|
65 |
+
unlikely_words.extend(b1_list)
|
66 |
+
unlikely_words.extend(b2_list)
|
67 |
+
unlikely_words.extend(b3_list)
|
68 |
+
unlikely_words.extend(b4_list)
|
69 |
+
unlikely_words.extend(words_list)
|
70 |
+
|
71 |
+
for word in unlikely_words:
|
72 |
+
prompt = prompt.replace(word, "")
|
73 |
+
return prompt
|
74 |
+
|
75 |
+
def blip_image_captioning(image, device, processor, generator, conditional="a photography of"):
|
76 |
+
# Load the processor and model
|
77 |
+
if processor is None:
|
78 |
+
processor = BlipProcessor.from_pretrained(
|
79 |
+
"Salesforce/blip-image-captioning-large"
|
80 |
+
)
|
81 |
+
if generator is None:
|
82 |
+
model = BlipForConditionalGeneration.from_pretrained(
|
83 |
+
"Salesforce/blip-image-captioning-large",
|
84 |
+
torch_dtype=torch.float16
|
85 |
+
).to(device)
|
86 |
+
|
87 |
+
# Prepare inputs
|
88 |
+
inputs = processor(
|
89 |
+
image,
|
90 |
+
text=conditional,
|
91 |
+
return_tensors="pt"
|
92 |
+
).to(device)
|
93 |
+
|
94 |
+
# Generate the caption
|
95 |
+
out = generator.generate(**inputs, max_new_tokens=20) # Use max_new_tokens for better clarity
|
96 |
+
caption = processor.decode(out[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
97 |
+
caption = remove_unlikely_words(caption)
|
98 |
+
|
99 |
+
return caption
|
100 |
+
|
101 |
+
def apply_color(image: PIL.Image.Image, color_map: PIL.Image.Image) -> PIL.Image.Image:
|
102 |
+
# Convert input images to LAB color space
|
103 |
+
image_lab = image.convert('LAB')
|
104 |
+
color_map_lab = color_map.convert('LAB')
|
105 |
+
|
106 |
+
# Split LAB channels
|
107 |
+
l, a , b = image_lab.split()
|
108 |
+
_, a_map, b_map = color_map_lab.split()
|
109 |
+
|
110 |
+
# Merge LAB channels with color map
|
111 |
+
merged_lab = PIL.Image.merge('LAB', (l, a_map, b_map))
|
112 |
+
|
113 |
+
# Convert merged LAB image back to RGB color space
|
114 |
+
result_rgb = merged_lab.convert('RGB')
|
115 |
+
return result_rgb
|