Blog_Generator / app.py
Chillyblast's picture
Create app.py
0b6d7d2 verified
raw
history blame
961 Bytes
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Initialize the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained('gpt2-large')
model = AutoModelForCausalLM.from_pretrained('gpt2-large')
def generate_blog(topic, max_length=500, num_return_sequences=1):
# Encode the topic as input IDs
input_ids = tokenizer.encode(topic, return_tensors='pt')
# Generate the blog text
outputs = model.generate(
input_ids,
max_length=max_length,
num_return_sequences=num_return_sequences,
no_repeat_ngram_size=2,
early_stopping=True
)
# Decode the generated IDs to text
generated_texts = [tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
return generated_texts
# Example usage
topic = input(str("Enter the topic:"))
generated_blogs = generate_blog(topic)
for i, blog in enumerate(generated_blogs):
print(f"Blog {i+1}:\n{blog}\n")