File size: 9,407 Bytes
4516170 c343a33 4516170 c343a33 4516170 c343a33 4516170 dc6f992 c343a33 4516170 c343a33 4516170 c343a33 4516170 c343a33 4516170 c343a33 4516170 c343a33 4516170 c343a33 4516170 c343a33 4516170 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import streamlit as st
import os
import json
import fitz
from io import BytesIO
from PIL import Image
import pandas as pd
import zipfile
import tempfile
def extract_text_images(
pdf_path: str, output_folder: str,
minimum_font_size: int,
extraction_type: str = 'both'
) -> dict:
"""
Extracts text and/or images from a PDF and organizes them by pages.
"""
if not os.path.exists(output_folder):
os.makedirs(output_folder)
extraction_data = []
pdf_document = fitz.open(pdf_path)
for page_number in range(pdf_document.page_count):
page = pdf_document.load_page(page_number)
elements = []
if extraction_type in ('text', 'both'):
text_blocks = page.get_text("dict")["blocks"]
lines = {}
for block in text_blocks:
if block["type"] == 0:
for line in block["lines"]:
for span in line["spans"]:
font_size = span["size"]
top = span["bbox"][1]
if font_size < minimum_font_size:
continue
if top not in lines:
lines[top] = []
lines[top].append(span)
for top in sorted(lines.keys()):
line = lines[top]
line_text = " ".join([span['text'] for span in line])
elements.append({
'type': 'text',
'font_size': line[0]['size'],
'page': page_number + 1,
'content': line_text,
'x0': line[0]['bbox'][0],
'top': top,
})
if extraction_type in ('images', 'both'):
image_list = page.get_images(full=True)
for img_index, img in enumerate(image_list):
xref = img[0]
base_image = pdf_document.extract_image(xref)
image_bytes = base_image["image"]
image_filename = os.path.join(
output_folder,
f"page_{page_number + 1}_img_{img_index + 1}.png"
)
with open(image_filename, "wb") as img_file:
img_file.write(image_bytes)
img_rect = page.get_image_bbox(img)
elements.append({
'type': 'image',
'page': page_number + 1,
'path': image_filename,
'x0': img_rect.x0,
'top': img_rect.y0
})
elements.sort(key=lambda e: (e['top'], e['x0']))
page_content = []
for element in elements:
if element['type'] == 'text':
if page_content and page_content[-1]['type'] == 'text':
page_content[-1]['content'] += " " + element['content']
else:
page_content.append({
'type': 'text',
'content': element['content']
})
elif element['type'] == 'image':
page_content.append({
'type': 'image',
'path': element['path']
})
extraction_data.append({
'page': page_number + 1,
'content': page_content
})
pdf_document.close()
return extraction_data
def convert_to_xlsx(data: dict) -> BytesIO:
"""
Converts the extracted data to an XLSX file.
"""
rows = []
for item in data:
page_number = item['page']
content_list = item['content']
for content in content_list:
if content['type'] == 'text':
rows.append({
'Page': page_number,
'Content': content['content']
})
elif content['type'] == 'image':
rows.append({
'Page': page_number,
'Content': f"[Image: {content['path']}]"
})
df = pd.DataFrame(rows)
output = BytesIO()
with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
df.to_excel(writer, index=False, sheet_name='Extraction')
output.seek(0)
return output
def create_zip_with_json_and_images(output_folder, extraction_data):
"""
Creates a ZIP file containing both images and JSON data.
"""
zip_buffer = BytesIO()
with zipfile.ZipFile(zip_buffer, "w") as zip_file:
# Add JSON file
json_data = json.dumps(extraction_data, ensure_ascii=False, indent=4).encode('utf-8')
zip_file.writestr("extraction_data.json", json_data)
# Add images
for item in extraction_data:
for content in item['content']:
if content['type'] == 'image':
image_path = content['path']
image_name = os.path.basename(image_path)
zip_file.write(image_path, image_name)
zip_buffer.seek(0)
return zip_buffer
def main():
st.markdown("<h1 style='text-align: center; color: blue;'>PDF DATA SNACHER:PAGEWISE</h1>", unsafe_allow_html=True)
st.markdown("<h3 style='text-align: center;color: brown;'>Extract valuable text and images from PDFs effortlessly and Convert PDFs into editable text and high-quality images </h3>", unsafe_allow_html=True)
st.sidebar.markdown(
"""
<div style="background-color: lightgray; padding: 2px; border-radius: 2px; text-align: center;">
<h2 style="color: blue; margin: 0;">PDF PREVIEW</h2>
</div>
""", unsafe_allow_html=True)
pdf_file = st.file_uploader("Upload PDF", type="pdf")
if pdf_file is not None:
num_pages_to_preview = st.sidebar.slider(
"Select number of pages to preview:",
min_value=1, max_value=5, value=1
)
pdf_document = fitz.open(stream=pdf_file.read(), filetype="pdf")
for page_num in range(min(num_pages_to_preview, pdf_document.page_count)):
page = pdf_document.load_page(page_num)
pix = page.get_pixmap()
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
st.sidebar.image(image, caption=f"Page {page_num + 1} Preview", use_column_width=True)
st.info("You can select **only text** or **only images** or **text and images both** to extract form pdf")
extraction_type = st.selectbox(
"Choose extraction type:",
("text", "images", "both")
)
st.info("Minimum font size is the size below which size, the text will get ignored for extraction")
minimum_font_size = st.number_input(
"Minimum font size to extract:",
min_value=1, value=2
)
output_folder = st.text_input("Output folder path:")
if st.button("Start Extraction"):
if pdf_file is not None and output_folder:
with tempfile.TemporaryDirectory() as temp_dir:
temp_pdf_path = os.path.join(temp_dir, pdf_file.name)
with open(temp_pdf_path, "wb") as f:
f.write(pdf_file.getvalue())
extraction_data = extract_text_images(
temp_pdf_path,
temp_dir,
minimum_font_size,
extraction_type
)
st.json(extraction_data)
if extraction_type == 'images' or extraction_type == 'both':
zip_data = create_zip_with_json_and_images(temp_dir, extraction_data)
st.download_button(
label="Download ZIP",
data=zip_data,
file_name='extraction_data.zip',
mime='application/zip'
)
xlsx_data = convert_to_xlsx(extraction_data)
col1, col2 = st.columns(2)
with col1:
st.download_button(
label="Download JSON",
data=json.dumps(extraction_data, ensure_ascii=False, indent=4).encode('utf-8'),
file_name='extraction_data.json',
mime='application/json'
)
with col2:
st.download_button(
label="Download XLSX",
data=xlsx_data,
file_name='extraction_data.xlsx',
mime='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet'
)
else:
st.error("Please upload a PDF file and provide an output folder path.")
st.markdown(
"""
<style>
.footer {
position: fixed;
bottom: 0;
left: 0;
width: 100%;
background-color: #F0F0F0;
font-family:cursive;
text-align: right;
padding: 5px 0;
font-size:20px;
font-weight: bold;
color: #FF0000;
}
</style>
<div class="footer">
CREATED BY: CHINMAY BHALERAO
</div>
""",
unsafe_allow_html=True
)
if __name__ == "__main__":
main()
|