File size: 9,407 Bytes
4516170
 
 
 
 
 
 
c343a33
4516170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c343a33
 
 
4516170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c343a33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4516170
 
 
 
dc6f992
 
 
 
 
 
 
c343a33
4516170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c343a33
 
4516170
c343a33
 
 
4516170
 
 
 
 
c343a33
4516170
 
 
 
 
 
c343a33
 
 
 
 
 
 
 
 
4516170
 
 
 
 
 
 
 
c343a33
 
4516170
 
 
 
 
c343a33
 
4516170
c343a33
4516170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import streamlit as st
import os
import json
import fitz
from io import BytesIO
from PIL import Image
import pandas as pd
import zipfile
import tempfile

def extract_text_images(
        pdf_path: str, output_folder: str,
        minimum_font_size: int,
        extraction_type: str = 'both'
        ) -> dict:
    """
    Extracts text and/or images from a PDF and organizes them by pages.
    """
    if not os.path.exists(output_folder):
        os.makedirs(output_folder)

    extraction_data = []
    pdf_document = fitz.open(pdf_path)

    for page_number in range(pdf_document.page_count):
        page = pdf_document.load_page(page_number)
        elements = []

        if extraction_type in ('text', 'both'):
            text_blocks = page.get_text("dict")["blocks"]
            lines = {}

            for block in text_blocks:
                if block["type"] == 0:
                    for line in block["lines"]:
                        for span in line["spans"]:
                            font_size = span["size"]
                            top = span["bbox"][1]

                            if font_size < minimum_font_size:
                                continue

                            if top not in lines:
                                lines[top] = []
                            lines[top].append(span)

            for top in sorted(lines.keys()):
                line = lines[top]
                line_text = " ".join([span['text'] for span in line])

                elements.append({
                    'type': 'text',
                    'font_size': line[0]['size'],
                    'page': page_number + 1,
                    'content': line_text,
                    'x0': line[0]['bbox'][0],
                    'top': top,
                })

        if extraction_type in ('images', 'both'):
            image_list = page.get_images(full=True)

            for img_index, img in enumerate(image_list):
                xref = img[0]
                base_image = pdf_document.extract_image(xref)
                image_bytes = base_image["image"]
                image_filename = os.path.join(
                    output_folder,
                    f"page_{page_number + 1}_img_{img_index + 1}.png"
                )

                with open(image_filename, "wb") as img_file:
                    img_file.write(image_bytes)

                img_rect = page.get_image_bbox(img)
                elements.append({
                    'type': 'image',
                    'page': page_number + 1,
                    'path': image_filename,
                    'x0': img_rect.x0,
                    'top': img_rect.y0
                })

        elements.sort(key=lambda e: (e['top'], e['x0']))

        page_content = []
        for element in elements:
            if element['type'] == 'text':
                if page_content and page_content[-1]['type'] == 'text':
                    page_content[-1]['content'] += " " + element['content']
                else:
                    page_content.append({
                        'type': 'text',
                        'content': element['content']
                    })
            elif element['type'] == 'image':
                page_content.append({
                    'type': 'image',
                    'path': element['path']
                })

        extraction_data.append({
            'page': page_number + 1,
            'content': page_content
        })

    pdf_document.close()

    return extraction_data

def convert_to_xlsx(data: dict) -> BytesIO:
    """
    Converts the extracted data to an XLSX file.
    """
    rows = []

    for item in data:
        page_number = item['page']
        content_list = item['content']
        
        for content in content_list:
            if content['type'] == 'text':
                rows.append({
                    'Page': page_number,
                    'Content': content['content']
                })
            elif content['type'] == 'image':
                rows.append({
                    'Page': page_number,
                    'Content': f"[Image: {content['path']}]"
                })

    df = pd.DataFrame(rows)

    output = BytesIO()
    with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
        df.to_excel(writer, index=False, sheet_name='Extraction')

    output.seek(0)
    return output

def create_zip_with_json_and_images(output_folder, extraction_data):
    """
    Creates a ZIP file containing both images and JSON data.
    """
    zip_buffer = BytesIO()
    with zipfile.ZipFile(zip_buffer, "w") as zip_file:
        # Add JSON file
        json_data = json.dumps(extraction_data, ensure_ascii=False, indent=4).encode('utf-8')
        zip_file.writestr("extraction_data.json", json_data)
        
        # Add images
        for item in extraction_data:
            for content in item['content']:
                if content['type'] == 'image':
                    image_path = content['path']
                    image_name = os.path.basename(image_path)
                    zip_file.write(image_path, image_name)

    zip_buffer.seek(0)
    return zip_buffer

def main():
    st.markdown("<h1 style='text-align: center; color: blue;'>PDF DATA SNACHER:PAGEWISE</h1>", unsafe_allow_html=True)
    st.markdown("<h3 style='text-align: center;color: brown;'>Extract valuable text and images from PDFs effortlessly and Convert PDFs into editable text and high-quality images </h3>", unsafe_allow_html=True)

    st.sidebar.markdown(
        """
        <div style="background-color: lightgray; padding: 2px; border-radius: 2px; text-align: center;">
        <h2 style="color: blue; margin: 0;">PDF PREVIEW</h2>
        </div>
        """, unsafe_allow_html=True)


    pdf_file = st.file_uploader("Upload PDF", type="pdf")

    if pdf_file is not None:
        num_pages_to_preview = st.sidebar.slider(
            "Select number of pages to preview:", 
            min_value=1, max_value=5, value=1
        )

        pdf_document = fitz.open(stream=pdf_file.read(), filetype="pdf")
        for page_num in range(min(num_pages_to_preview, pdf_document.page_count)):
            page = pdf_document.load_page(page_num)
            pix = page.get_pixmap()
            image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
            st.sidebar.image(image, caption=f"Page {page_num + 1} Preview", use_column_width=True)

    st.info("You can select **only text** or **only images** or **text and images both** to extract form pdf")
    extraction_type = st.selectbox(
        "Choose extraction type:",
        ("text", "images", "both")
    )

    st.info("Minimum font size is the size below which size, the text will get ignored for extraction")
    minimum_font_size = st.number_input(
        "Minimum font size to extract:",
        min_value=1, value=2
    )

    output_folder = st.text_input("Output folder path:")

    if st.button("Start Extraction"):
        if pdf_file is not None and output_folder:
            with tempfile.TemporaryDirectory() as temp_dir:
                temp_pdf_path = os.path.join(temp_dir, pdf_file.name)
                with open(temp_pdf_path, "wb") as f:
                    f.write(pdf_file.getvalue())

                extraction_data = extract_text_images(
                    temp_pdf_path,
                    temp_dir,
                    minimum_font_size,
                    extraction_type
                )

                st.json(extraction_data)

                if extraction_type == 'images' or extraction_type == 'both':
                    zip_data = create_zip_with_json_and_images(temp_dir, extraction_data)
                    st.download_button(
                        label="Download ZIP",
                        data=zip_data,
                        file_name='extraction_data.zip',
                        mime='application/zip'
                    )

                xlsx_data = convert_to_xlsx(extraction_data)

                col1, col2 = st.columns(2)
                with col1:
                    st.download_button(
                        label="Download JSON",
                        data=json.dumps(extraction_data, ensure_ascii=False, indent=4).encode('utf-8'),
                        file_name='extraction_data.json',
                        mime='application/json'
                    )
                with col2:
                    st.download_button(
                        label="Download XLSX",
                        data=xlsx_data,
                        file_name='extraction_data.xlsx',
                        mime='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet'
                    )
        else:
            st.error("Please upload a PDF file and provide an output folder path.")

    st.markdown(
        """
        <style>
        .footer {
            position: fixed;
            bottom: 0;
            left: 0;
            width: 100%;
            background-color: #F0F0F0;
            font-family:cursive;
            text-align: right;
            padding: 5px 0;
            font-size:20px;
            font-weight: bold;
            color: #FF0000;
        }
        </style>
        <div class="footer">
            CREATED BY: CHINMAY BHALERAO
        </div>
        """,
        unsafe_allow_html=True
    )

if __name__ == "__main__":
    main()