File size: 4,870 Bytes
10e9b7d eccf8e4 3c4371f 4c42a76 808eedd 4c42a76 8dce943 4c42a76 3db6293 808eedd 83b4ffd 808eedd 119dab4 4c42a76 808eedd 4c42a76 3c4371f 808eedd 5bb8fe1 4c42a76 808eedd e80aab9 808eedd 4c42a76 808eedd 8dce943 5bb8fe1 808eedd 4c42a76 808eedd 5bb8fe1 3c4371f 808eedd 4c42a76 808eedd 4c42a76 808eedd 4c42a76 808eedd 5bb8fe1 4c42a76 808eedd 4c42a76 5bb8fe1 4c42a76 808eedd 4c42a76 eccf8e4 808eedd 8dce943 4c42a76 5bb8fe1 808eedd 31243f4 808eedd e80aab9 808eedd 5bb8fe1 4c42a76 808eedd 4c42a76 808eedd 4c42a76 5bb8fe1 808eedd 5bb8fe1 808eedd 7e4a06b 31243f4 808eedd 8dce943 4c42a76 e80aab9 4c42a76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
import os
import gradio as gr
import requests
import pandas as pd
from huggingface_hub import InferenceClient
from duckduckgo_search import DDGS
from datasets import load_dataset
import wikipediaapi
# Constants
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
HF_TOKEN = os.getenv("HF_TOKEN")
# Setup Hugging Face client (advanced model)
llm_model_id = "HuggingFaceH4/zephyr-7b-beta"
hf_client = InferenceClient(llm_model_id, token=HF_TOKEN)
# Wikipedia API setup (corrected user-agent)
wiki_api = wikipediaapi.Wikipedia(
language='en',
user_agent='SmartAgent/1.0 ([email protected])'
)
# Load a subset of Wikipedia dataset (adjust as needed)
wiki_dataset = load_dataset("wikipedia", "20220301.en", split="train[:10000]", trust_remote_code=True)
# Search functions
def duckduckgo_search(query):
with DDGS() as ddgs:
results = [r for r in ddgs.text(query, max_results=3)]
return "\n".join([r["body"] for r in results if r.get("body")]) or "No results found."
def wikipedia_search(query):
page = wiki_api.page(query)
return page.summary if page.exists() else "No Wikipedia page found."
# Comprehensive Agent
class SmartAgent:
def __init__(self):
pass
def __call__(self, question: str) -> str:
q_lower = question.lower()
if any(term in q_lower for term in ["current", "latest", "2024", "2025", "who is the president", "recent", "live"]):
return duckduckgo_search(question)
wiki_result = wikipedia_search(question)
if "No Wikipedia page found" not in wiki_result:
return wiki_result
try:
resp = hf_client.text_generation(question, max_new_tokens=512)
return resp
except Exception as e:
return f"HF LLM error: {e}"
# Submission logic
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = profile.username
print(f"User logged in: {username}")
else:
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
agent = SmartAgent()
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
except Exception as e:
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
correct_answers = 0
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or not question_text:
continue
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
return f"Submission Failed: {e}", pd.DataFrame(results_log)
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# Smart Agent Evaluation Runner")
gr.Markdown("""
**Instructions:**
1. Clone this space, define your agent logic, tools, packages, etc.
2. Log in to Hugging Face.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
demo.launch(debug=True, share=False)
|