File size: 9,513 Bytes
fdfb0c4 45f17fe 120d4a1 d7ca359 6cc2332 fb5ba89 6052994 918fcdb 6052994 20af5e8 b65d54b 6023f3b 55f4af6 6052994 918fcdb 6052994 b0fad1c 6052994 e55eeac 6052994 e55eeac 6052994 ef1764f 20af5e8 ef1764f 6052994 120d4a1 fb5ba89 7755f96 788d9fe 89880a6 788d9fe 89880a6 788d9fe 120d4a1 afcb77e 6023f3b 89880a6 20af5e8 120d4a1 cddf298 58bb7f3 e8f0d97 f259d93 944514e b671676 944514e 1466171 346bac9 f033509 00577b5 f033509 b671676 346bac9 944514e 1466171 00577b5 944514e 1466171 00577b5 f259d93 b65d54b 944514e 1466171 f033509 ef1764f 944514e 346bac9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import streamlit as st
import os
import base64
import io
from PIL import Image
from pydub import AudioSegment
import IPython
import soundfile as sf
import requests
import pandas as pd # If you're working with DataFrames
import matplotlib.figure # If you're using matplotlib figures
import numpy as np
from custom_agent import CustomHfAgent
from tool_loader import ToolLoader
from tool_config import tool_names
from app_description import show_app_description
from logger import log_response
# For Altair charts
import altair as alt
# For Bokeh charts
from bokeh.models import Plot
# For Plotly charts
import plotly.express as px
# For Pydeck charts
import pydeck as pdk
import logging
import streamlit as st
from transformers import load_tool, Agent
from tool_loader import ToolLoader
# Configure the logging settings for transformers
transformers_logger = logging.getLogger("transformers.file_utils")
transformers_logger.setLevel(logging.INFO) # Set the desired logging level
import time
import torch
def handle_submission(user_message, selected_tools, url_endpoint):
log_response("User input \n {}".format(user_message))
log_response("selected_tools \n {}".format(selected_tools))
log_response("url_endpoint \n {}".format(url_endpoint))
agent = CustomHfAgent(
url_endpoint=url_endpoint,
token=os.environ['HF_token'],
additional_tools=selected_tools,
input_params={"max_new_tokens": 192},
)
response = agent.run(user_message)
log_response("Agent Response\n {}".format(response))
return response
# Declare global variable
global log_enabled
log_enabled = False
# Create tool loader instance
tool_loader = ToolLoader(tool_names)
st.title("Hugging Face Agent and tools")
## LB https://huggingface.co/spaces/qiantong-xu/toolbench-leaderboard
st.markdown("Welcome to the Hugging Face Agent and Tools app! This app allows you to interact with various tools using the Hugging Face API.")
# Create a page with tabs
tabs = st.tabs(["Chat", "URL, Tools and logging", "User Description", "Developers"])
# Tab 1: Chat
with tabs[0]:
# Code for URL and Tools checkboxes
#chat_description()
# Examples for the user perspective
st.markdown("Stat to chat. e.g. Generate an image of a boat. This will make the agent use the tool text2image to generate an image.")
# Tab 2: URL and Tools
with tabs[1]:
#
app_config()
# Tab 3: User Description
with tabs[2]:
#
app_user_description()
# Tab 4: Developers
with tabs[3]:
# Developer-related content
st.markdown('''
# Hugging Face Agent and Tools Code Overview
## Overview
The provided Python code implements an interactive Streamlit web application that allows users to interact with various tools through the Hugging Face API. The app integrates Hugging Face models and tools, enabling users to perform tasks such as text generation, sentiment analysis, and more.
## Imports
The code imports several external libraries and modules, including:
- `streamlit`: For building the web application.
- `os`: For interacting with the operating system.
- `base64`, `io`, `Image` (from `PIL`), `AudioSegment` (from `pydub`), `IPython`, `sf`: For handling images and audio.
- `requests`: For making HTTP requests.
- `pandas`: For working with DataFrames.
- `matplotlib.figure`, `numpy`: For visualization.
- `altair`, `Plot` (from `bokeh.models`), `px` (from `plotly.express`), `pdk` (from `pydeck`): For different charting libraries.
- `time`: For handling time-related operations.
- `transformers`: For loading tools and agents.
## ToolLoader Class
The `ToolLoader` class is responsible for loading tools based on their names. It has methods to load tools from a list of tool names and handles potential errors during loading.
## CustomHfAgent Class
The `CustomHfAgent` class extends the base `Agent` class from the `transformers` module. It is designed to interact with a remote inference API and includes methods for generating text based on a given prompt.
## Tool Loading and Customization
- Tool names are defined in the `tool_names` list.
- The `ToolLoader` instance (`tool_loader`) loads tools based on the provided names.
- The `CustomHfAgent` instance (`agent`) is created with a specified URL endpoint, token, and additional tools.
- New tools can be added by appending their names to the `tool_names` list.
## Streamlit App
The Streamlit app is structured as follows:
1. Tool selection dropdown for choosing the inference URL.
2. An expander for displaying tool descriptions.
3. An expander for selecting tools.
4. Examples and instructions for the user.
5. A chat interface for user interactions.
6. Handling of user inputs, tool selection, and agent responses.
## Handling of Responses
The code handles various types of responses from the agent, including images, audio, text, DataFrames, and charts. The responses are displayed in the Streamlit app based on their types.
## How to Run
1. Install required dependencies with `pip install -r requirements.txt`.
2. Run the app with `streamlit run <filename.py>`.
## Notes
- The code emphasizes customization and extensibility, allowing developers to easily add new tools and interact with the Hugging Face API.
- Ensure proper configuration, such as setting the Hugging Face token as an environment variable.
''')
# Display logs in the frontend
logs_expander = st.expander("Logs")
with logs_expander:
log_output = st.empty()
# Custom logging handler to append log messages to the chat
class ChatHandler(logging.Handler):
def __init__(self):
super().__init__()
def emit(self, record):
log_message = self.format(record)
with st.chat_message("ai"):
st.markdown(f"Log: {log_message}")
# Add the custom handler to the transformers_logger
chat_handler = ChatHandler()
transformers_logger.addHandler(chat_handler)
# Function to update logs in the frontend
def update_logs():
log_output.code("") # Clear previous logs
# Do nothing here since logs are appended to the chat
# Update logs when the button is clicked
if st.button("Update Logs"):
update_logs()
# Chat code (user input, agent responses, etc.)
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
with st.chat_message("assistant"):
st.markdown("Hello there! How can I assist you today?")
if user_message := st.chat_input("Enter message"):
st.chat_message("user").markdown(user_message)
st.session_state.messages.append({"role": "user", "content": user_message})
selected_tools = [tool_loader.tools[idx] for idx, checkbox in enumerate(tool_checkboxes) if checkbox]
# Handle submission with the selected inference URL
response = handle_submission(user_message, selected_tools, url_endpoint)
with st.chat_message("assistant"):
if response is None:
st.warning("The agent's response is None. Please try again. Generate an image of a flying horse.")
elif isinstance(response, Image.Image):
st.image(response)
elif isinstance(response, AudioSegment):
st.audio(response)
elif isinstance(response, int):
st.markdown(response)
elif isinstance(response, str):
if "emojified_text" in response:
st.markdown(f"{response['emojified_text']}")
else:
st.markdown(response)
elif isinstance(response, list):
for item in response:
st.markdown(item) # Assuming the list contains strings
elif isinstance(response, pd.DataFrame):
st.dataframe(response)
elif isinstance(response, pd.Series):
st.table(response.iloc[0:10])
elif isinstance(response, dict):
st.json(response)
elif isinstance(response, st.graphics_altair.AltairChart):
st.altair_chart(response)
elif isinstance(response, st.graphics_bokeh.BokehChart):
st.bokeh_chart(response)
elif isinstance(response, st.graphics_graphviz.GraphvizChart):
st.graphviz_chart(response)
elif isinstance(response, st.graphics_plotly.PlotlyChart):
st.plotly_chart(response)
elif isinstance(response, st.graphics_pydeck.PydeckChart):
st.pydeck_chart(response)
elif isinstance(response, matplotlib.figure.Figure):
st.pyplot(response)
elif isinstance(response, streamlit.graphics_vega_lite.VegaLiteChart):
st.vega_lite_chart(response)
else:
st.warning("Unrecognized response type. Please try again. e.g. Generate an image of a flying horse.")
st.session_state.messages.append({"role": "assistant", "content": response})
|