File size: 6,869 Bytes
fdfb0c4
cbbdd46
 
bd2daac
b066a4d
 
3709e0d
 
 
 
7755f96
 
 
2371ba5
7755f96
 
4dc413a
7755f96
4dc413a
b066a4d
 
 
 
 
 
7755f96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbbdd46
7755f96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b066a4d
bb77c30
 
b066a4d
 
 
 
 
 
 
 
 
 
 
6c04e26
 
b066a4d
 
 
 
 
 
 
 
19b814d
337b12f
0bde6fd
337b12f
b066a4d
bb77c30
f8cb833
b066a4d
 
bb77c30
 
b066a4d
 
8f6fc3b
 
f8cb833
b066a4d
8f6fc3b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import streamlit as st
import secrets

#from transformers import BertModel, BertTokenizer
from transformers import HfAgent, load_tool

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, LocalAgent


#checkpoint = "THUDM/agentlm-7b"
#model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.bfloat16)
#tokenizer = AutoTokenizer.from_pretrained(checkpoint)

#agent = LocalAgent(model, tokenizer)
#agent.run("Draw me a picture of rivers and lakes.")

#print(agent.run("Is the following `text` (in Spanish) positive or negative?", text="¡Este es un API muy agradable!"))

# Load tools
controlnet_transformer = load_tool("huggingface-tools/text-to-image")
upscaler = load_tool("diffusers/latent-upscaler-tool")

tools = [controlnet_transformer, upscaler ]


############ HfAgent
from huggingface_hub import login
#Do this before HfAgent() and it should work

#from huggingface_hub import login
# load tools
from transformers.tools import HfAgent
from transformers.tools import Agent
#import textract
#from utils import logging
import time

from huggingface_hub import HfFolder, hf_hub_download, list_spaces




class CustomHfAgent(Agent):
    """
    Agent that uses an inference endpoint to generate code.

    Args:
        url_endpoint (`str`):
            The name of the url endpoint to use.
        token (`str`, *optional*):
            The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated when
            running `huggingface-cli login` (stored in `~/.huggingface`).
        chat_prompt_template (`str`, *optional*):
            Pass along your own prompt if you want to override the default template for the `chat` method. Can be the
            actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named
            `chat_prompt_template.txt` in this repo in this case.
        run_prompt_template (`str`, *optional*):
            Pass along your own prompt if you want to override the default template for the `run` method. Can be the
            actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named
            `run_prompt_template.txt` in this repo in this case.
        additional_tools ([`Tool`], list of tools or dictionary with tool values, *optional*):
            Any additional tools to include on top of the default ones. If you pass along a tool with the same name as
            one of the default tools, that default tool will be overridden.

    Example:

    ```py
    from transformers import HfAgent

    agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder")
    agent.run("Is the following `text` (in Spanish) positive or negative?", text="¡Este es un API muy agradable!")
    ```
    """

    def __init__(
        self, url_endpoint, token=secrets.HF_token, chat_prompt_template=None, run_prompt_template=None, additional_tools=None
    ):
       # super()._init_(self, url_endpoint, token=None, chat_prompt_template=None, run_prompt_template=None, additional_tools=None)
        self.url_endpoint = url_endpoint
        if token is None:
            self.token = f"Bearer {HfFolder().get_token()}"
        elif token.startswith("Bearer") or token.startswith("Basic"):
            self.token = token
        else:
            self.token = f"Bearer {token}"
        super().__init__(
            chat_prompt_template=chat_prompt_template,
            run_prompt_template=run_prompt_template,
            additional_tools=additional_tools,
        )

    def generate_one(self, prompt, stop):
        headers = {"Authorization": self.token}
        inputs = {
            "inputs": prompt,
            "parameters": {"max_new_tokens": 192, "return_full_text": False, "stop": stop},
        }
        print(inputs)
        response = requests.post(self.url_endpoint, json=inputs, headers=headers)
        if response.status_code == 429:
            print("Getting rate-limited, waiting a tiny bit before trying again.")
            time.sleep(1)
            return self._generate_one(prompt)
        elif response.status_code != 200:
            raise ValueError(f"Errors {inputs} {response.status_code}: {response.json()}")

        result = response.json()[0]["generated_text"]
        # Inference API returns the stop sequence
        for stop_seq in stop:
            if result.endswith(stop_seq):
                return result[: -len(stop_seq)]
        return result




# create agent
#agent = HfAgent(API_URL)

#print(agent)
# instruct agent


# Use CustomHfAgent in your code
agent = CustomHfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder")
#agent.token = "Bearer xxx"
#print(agent.token)
#agent.run("Answer the following question", question ="what is the capitol of the usa?", context="The capitol of the usa is London")
#agent.chat("Draw me a picture of rivers and lakes")

#agent.chat("Transform the picture so that there is a rock in there")

#result = agent.generate_one("What is the capitol of the usa.", stop=["your_stop_sequence"])
#print(result)

#agent.run("Show me an image of a horse")




#####




# Define the model and tokenizer
#model = BertModel.from_pretrained('bert-base-uncased')
#tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

# Create the Streamlit app
st.title("Hugging Face Agent")

# Input field for the user's message
message_input = st.text_input("Enter your message:", "")

# Checkboxes for the tools to be used by the agent
tool_checkboxes = [st.checkbox(f"Use {tool}") for tool in tools]

# Submit button
#submit_button = st.button("Submit")


# Define the callback function to handle the form submission
def handle_submission():
    # Get the user's message and the selected tools
    message = message_input
    selected_tools = [tool for tool, checkbox in zip(tools, tool_checkboxes) if checkbox]

    # Initialize the agent with the selected tools
    #agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder", additional_tools=tools)
    #agent = HfAgent("https://api-inference.huggingface.co/models/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5", additional_tools=tools)
    agent = HfAgent("https://api-inference.huggingface.co/models/THUDM/agentlm-7b", additional_tools=tools)
    

 #   agent.config.tokenizer = tokenizer
  #  agent.config.tools = selected_tools

    # Process the user's message
   # inputs = tokenizer.encode_plus(message, add_special_tokens=True, return_tensors="pt")
   # outputs = agent(inputs['input_ids'], attention_mask=inputs['attention_mask'])

    # Display the agent's response
    response = agent.run(message)
    st.text(f"{response:.4f}")
    return "done"


# Add the callback function to the Streamlit app
submit_button = st.button("Submit", on_click=handle_submission)