File size: 16,002 Bytes
4278cab
 
 
 
 
9f36b00
4278cab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f36b00
4278cab
 
 
 
 
 
 
 
 
 
 
 
 
9f36b00
4278cab
 
 
 
 
 
314cc61
 
 
 
 
 
 
 
 
 
4278cab
 
314cc61
 
4278cab
 
9f36b00
4278cab
 
 
 
 
 
 
9f36b00
 
4278cab
 
9f36b00
4278cab
 
 
 
 
9f36b00
4278cab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f36b00
 
 
4278cab
 
 
 
9f36b00
4278cab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f36b00
4278cab
 
 
 
 
9f36b00
4278cab
 
 
 
 
 
9f36b00
 
 
4278cab
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import List, Tuple, Optional, Dict, Any, Union
from dataclasses import dataclass
from enum import Enum
import logging

from huggingface_hub import hf_hub_download

prm_model_path = hf_hub_download(
    repo_id="tensorblock/Llama3.1-8B-PRM-Mistral-Data-GGUF",
    filename="Llama3.1-8B-PRM-Mistral-Data-Q4_K_M.gguf"
)

class GenerationStrategy(str, Enum):
    DEFAULT = "default"
    MAJORITY_VOTING = "majority_voting"
    BEST_OF_N = "best_of_n"
    BEAM_SEARCH = "beam_search"
    DVTS = "dvts"

@dataclass
class GenerationConfig:
    num_samples: int = 5
    depth: int = 3
    breadth: int = 2
    max_history_turns: int = 3
    max_new_tokens: int = 50
    temperature: float = 0.7
    top_p: float = 0.9
    strategy: GenerationStrategy = GenerationStrategy.DEFAULT

class LlamaGenerator:
    def __init__(
        self,
        llama_model_name: str,
        prm_model_path: str,
        device: str = None,
        default_generation_config: Optional[GenerationConfig] = None
    ):
        """Initialize the LlamaGenerator with specified models."""
        self.logger = logging.getLogger(__name__)
        self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
        self.default_config = default_generation_config or GenerationConfig()
        
        self.logger.info(f"Initializing LlamaGenerator on device: {self.device}")
        
        try:
            self._initialize_models(llama_model_name, prm_model_path)
        except Exception as e:
            self.logger.error(f"Failed to initialize models: {str(e)}")
            raise

    def _initialize_models(self, llama_model_name: str, prm_model_path: str):
        """Initialize models with error handling and logging."""
        # Initialize LLaMA model and tokenizer
        self.llama_tokenizer = AutoTokenizer.from_pretrained(
            llama_model_name, 
            padding_side='left',
            trust_remote_code=True
        )
        if self.llama_tokenizer.pad_token is None:
            self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token
            
        self.llama_model = AutoModelForCausalLM.from_pretrained(
            llama_model_name,
            device_map="auto",
            trust_remote_code=True
        )
        
        # Initialize PRM model
        self.prm_model = self._load_quantized_model(prm_model_path)
        
        # Enable token streaming
        self.supports_streaming = hasattr(self.llama_model, "streamer")

    async def generate_stream(
        self,
        prompt: str,
        config: Optional[GenerationConfig] = None
    ) -> AsyncGenerator[str, None]:
        """Stream tokens as they're generated."""
        if not self.supports_streaming:
            raise NotImplementedError("This model doesn't support streaming")
            
        config = config or self.default_config
        input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
        
        async for token in self.llama_model.streamer(input_ids, **self._get_generation_kwargs(config)):
            yield self.llama_tokenizer.decode([token])

    def _get_generation_kwargs(self, config: GenerationConfig) -> Dict[str, Any]:
        """Get generation kwargs based on config."""
        return {
            "max_new_tokens": config.max_new_tokens,
            "temperature": config.temperature,
            "top_p": config.top_p,
            "do_sample": config.temperature > 0,
        }
    
    def _load_quantized_model(self, model_path: str) -> Llama:
        """Load a quantized GGUF model using llama-cpp-python.
        
        Args:
            model_path (str): Path to the GGUF model file
            
        Returns:
            Llama: Loaded model instance
        """
        try:
            # Configure GPU layers if CUDA is available
            n_gpu_layers = -1 if torch.cuda.is_available() else 0
            
            # Load the model
            model = Llama(
                model_path=model_path,
                n_ctx=2048,  # Context window
                n_batch=512,  # Batch size for prompt processing
                n_gpu_layers=n_gpu_layers,  # Number of layers to offload to GPU
                verbose=False
            )
            
            self.logger.info(f"Successfully loaded GGUF model from {model_path}")
            return model
            
        except Exception as e:
            self.logger.error(f"Failed to load GGUF model: {str(e)}")
            raise

    def _score_with_prm(self, text: str) -> float:
        """Score text using the PRM model.
        
        Args:
            text (str): Text to score
            
        Returns:
            float: Model score
        """
        try:
            # For GGUF models, we need to use the proper scoring interface
            result = self.prm_model.eval(text)
            return result['logprobs']  # Or another appropriate scoring metric
            
        except Exception as e:
            self.logger.error(f"Error scoring text with PRM: {str(e)}")
            return float('-inf')  # Return very low score on error

        
    def _construct_prompt(
        self,
        context: str,
        user_input: str,
        chat_history: List[Tuple[str, str]],
        max_history_turns: int = 3
    ) -> str:
        """Construct a formatted prompt from the input components."""
        system_message = f"Please assist based on the following context: {context}"
        prompt = f"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system_message}<|eot_id|>"

        for user_msg, assistant_msg in chat_history[-max_history_turns:]:
            prompt += f"<|start_header_id|>user<|end_header_id|>\n\n{user_msg}<|eot_id|>"
            prompt += f"<|start_header_id|>assistant<|end_header_id|>\n\n{assistant_msg}<|eot_id|>"

        prompt += f"<|start_header_id|>user<|end_header_id|>\n\n{user_input}<|eot_id|>"
        prompt += "<|start_header_id|>assistant<|end_header_id|>\n\n"
        return prompt

    def generate(
        self,
        prompt: str,
        model_kwargs: Dict[str, Any],
        strategy: str = "default",
        num_samples: int = 5,
        depth: int = 3,
        breadth: int = 2
    ) -> str:
        """Generate a response using the specified strategy.
        
        Args:
            prompt (str): The input prompt
            model_kwargs (dict): Additional arguments for model.generate()
            strategy (str): Generation strategy ('default', 'majority_voting', 'best_of_n', 'beam_search', 'dvts')
            num_samples (int): Number of samples for applicable strategies
            depth (int): Depth for DVTS strategy
            breadth (int): Breadth for DVTS strategy
            
        Returns:
            str: Generated response
        """
        if strategy == "default":
            input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
            output = self.llama_model.generate(input_ids, **model_kwargs)
            return self.llama_tokenizer.decode(output[0], skip_special_tokens=True)
            
        elif strategy == "majority_voting":
            outputs = []
            for _ in range(num_samples):
                input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
                output = self.llama_model.generate(input_ids, **model_kwargs)
                outputs.append(self.llama_tokenizer.decode(output[0], skip_special_tokens=True))
            return max(set(outputs), key=outputs.count)
            
        elif strategy == "best_of_n":
            scored_outputs = []
            for _ in range(num_samples):
                input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
                output = self.llama_model.generate(input_ids, **model_kwargs)
                response = self.llama_tokenizer.decode(output[0], skip_special_tokens=True)
                score = self.prm_model(**self.llama_tokenizer(response, return_tensors="pt").to(self.device)).logits.mean().item()
                scored_outputs.append((response, score))
            return max(scored_outputs, key=lambda x: x[1])[0]
            
        elif strategy == "beam_search":
            input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
            outputs = self.llama_model.generate(
                input_ids,
                num_beams=num_samples,
                num_return_sequences=num_samples,
                **model_kwargs
            )
            return [self.llama_tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
            
        elif strategy == "dvts":
            results = []
            for _ in range(breadth):
                input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
                output = self.llama_model.generate(input_ids, **model_kwargs)
                response = self.llama_tokenizer.decode(output[0], skip_special_tokens=True)
                score = self.prm_model(**self.llama_tokenizer(response, return_tensors="pt").to(self.device)).logits.mean().item()
                results.append((response, score))
            
            for _ in range(depth - 1):
                best_responses = sorted(results, key=lambda x: x[1], reverse=True)[:breadth]
                for response, _ in best_responses:
                    input_ids = self.llama_tokenizer(response, return_tensors="pt").input_ids.to(self.device)
                    output = self.llama_model.generate(input_ids, **model_kwargs)
                    extended_response = self.llama_tokenizer.decode(output[0], skip_special_tokens=True)
                    score = self.prm_model(**self.llama_tokenizer(extended_response, return_tensors="pt").to(self.device)).logits.mean().item()
                    results.append((extended_response, score))
            return max(results, key=lambda x: x[1])[0]
        
        else:
            raise ValueError(f"Unknown strategy: {strategy}")

    def generate_with_context(
        self,
        context: str,
        user_input: str,
        chat_history: List[Tuple[str, str]],
        model_kwargs: Dict[str, Any],
        max_history_turns: int = 3,
        strategy: str = "default",
        num_samples: int = 5,
        depth: int = 3,
        breadth: int = 2
    ) -> str:
        """Generate a response using context and chat history.
        
        Args:
            context (str): Context for the conversation
            user_input (str): Current user input
            chat_history (List[Tuple[str, str]]): List of (user, assistant) message pairs
            model_kwargs (dict): Additional arguments for model.generate()
            max_history_turns (int): Maximum number of history turns to include
            strategy (str): Generation strategy
            num_samples (int): Number of samples for applicable strategies
            depth (int): Depth for DVTS strategy
            breadth (int): Breadth for DVTS strategy
            
        Returns:
            str: Generated response
        """
        prompt = self._construct_prompt(
            context,
            user_input,
            chat_history,
            max_history_turns
        )
        return self.generate(
            prompt,
            model_kwargs,
            strategy,
            num_samples,
            depth,
            breadth
        )

######################
#########
#################
from fastapi import FastAPI, HTTPException, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from typing import List, Optional, Dict
import asyncio
import uuid
from datetime import datetime
import json

class ChatMessage(BaseModel):
    role: str = Field(..., description="Role of the message sender (user/assistant)")
    content: str = Field(..., description="Content of the message")

class GenerationRequest(BaseModel):
    context: Optional[str] = Field(None, description="Context for the conversation")
    messages: List[ChatMessage] = Field(..., description="Chat history")
    config: Optional[Dict] = Field(None, description="Generation configuration")
    stream: bool = Field(False, description="Whether to stream the response")

class GenerationResponse(BaseModel):
    id: str = Field(..., description="Generation ID")
    content: str = Field(..., description="Generated content")
    created_at: datetime = Field(default_factory=datetime.now)

app = FastAPI(title="LLaMA Generation Service")

# Add CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Store generator instance
generator = None

@app.on_event("startup")
async def startup_event():
    global generator
    try:
        generator = LlamaGenerator(
            llama_model_name="meta-llama/Llama-3.2-1B-Instruct",
            prm_model_path=prm_model_path,
            default_generation_config=GenerationConfig(
                max_new_tokens=100,
                temperature=0.7
            )
        )
    except Exception as e:
        print(f"Failed to initialize generator: {str(e)}")
        raise

@app.post("/generate", response_model=GenerationResponse)
async def generate(request: GenerationRequest):
    if not generator:
        raise HTTPException(status_code=503, detail="Generator not initialized")
    
    try:
        # Format chat history
        chat_history = [(msg.role, msg.content) for msg in request.messages[:-1]]
        user_input = request.messages[-1].content
        
        # Create generation config
        config = GenerationConfig(**request.config) if request.config else None
        
        # Generate response
        response = await asyncio.to_thread(
            generator.generate_with_context,
            context=request.context or "",
            user_input=user_input,
            chat_history=chat_history,
            model_kwargs={},  # Add any model-specific kwargs here
            config=config
        )
        
        return GenerationResponse(
            id=str(uuid.uuid4()),
            content=response
        )
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.websocket("/generate/stream")
async def generate_stream(websocket):
    await websocket.accept()
    
    try:
        while True:
            # Receive and parse request
            request_data = await websocket.receive_text()
            request = GenerationRequest.parse_raw(request_data)
            
            # Format chat history
            chat_history = [(msg.role, msg.content) for msg in request.messages[:-1]]
            user_input = request.messages[-1].content
            
            # Create generation config
            config = GenerationConfig(**request.config) if request.config else None
            
            # Stream response
            async for token in generator.generate_stream(
                prompt=generator._construct_prompt(
                    context=request.context or "",
                    user_input=user_input,
                    chat_history=chat_history
                ),
                config=config
            ):
                await websocket.send_text(json.dumps({
                    "token": token,
                    "finished": False
                }))
                
            # Send finished message
            await websocket.send_text(json.dumps({
                "token": "",
                "finished": True
            }))
            
    except Exception as e:
        await websocket.send_text(json.dumps({
            "error": str(e)
        }))
    finally:
        await websocket.close()

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)