File size: 16,002 Bytes
4278cab 9f36b00 4278cab 9f36b00 4278cab 9f36b00 4278cab 314cc61 4278cab 314cc61 4278cab 9f36b00 4278cab 9f36b00 4278cab 9f36b00 4278cab 9f36b00 4278cab 9f36b00 4278cab 9f36b00 4278cab 9f36b00 4278cab 9f36b00 4278cab 9f36b00 4278cab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import List, Tuple, Optional, Dict, Any, Union
from dataclasses import dataclass
from enum import Enum
import logging
from huggingface_hub import hf_hub_download
prm_model_path = hf_hub_download(
repo_id="tensorblock/Llama3.1-8B-PRM-Mistral-Data-GGUF",
filename="Llama3.1-8B-PRM-Mistral-Data-Q4_K_M.gguf"
)
class GenerationStrategy(str, Enum):
DEFAULT = "default"
MAJORITY_VOTING = "majority_voting"
BEST_OF_N = "best_of_n"
BEAM_SEARCH = "beam_search"
DVTS = "dvts"
@dataclass
class GenerationConfig:
num_samples: int = 5
depth: int = 3
breadth: int = 2
max_history_turns: int = 3
max_new_tokens: int = 50
temperature: float = 0.7
top_p: float = 0.9
strategy: GenerationStrategy = GenerationStrategy.DEFAULT
class LlamaGenerator:
def __init__(
self,
llama_model_name: str,
prm_model_path: str,
device: str = None,
default_generation_config: Optional[GenerationConfig] = None
):
"""Initialize the LlamaGenerator with specified models."""
self.logger = logging.getLogger(__name__)
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
self.default_config = default_generation_config or GenerationConfig()
self.logger.info(f"Initializing LlamaGenerator on device: {self.device}")
try:
self._initialize_models(llama_model_name, prm_model_path)
except Exception as e:
self.logger.error(f"Failed to initialize models: {str(e)}")
raise
def _initialize_models(self, llama_model_name: str, prm_model_path: str):
"""Initialize models with error handling and logging."""
# Initialize LLaMA model and tokenizer
self.llama_tokenizer = AutoTokenizer.from_pretrained(
llama_model_name,
padding_side='left',
trust_remote_code=True
)
if self.llama_tokenizer.pad_token is None:
self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token
self.llama_model = AutoModelForCausalLM.from_pretrained(
llama_model_name,
device_map="auto",
trust_remote_code=True
)
# Initialize PRM model
self.prm_model = self._load_quantized_model(prm_model_path)
# Enable token streaming
self.supports_streaming = hasattr(self.llama_model, "streamer")
async def generate_stream(
self,
prompt: str,
config: Optional[GenerationConfig] = None
) -> AsyncGenerator[str, None]:
"""Stream tokens as they're generated."""
if not self.supports_streaming:
raise NotImplementedError("This model doesn't support streaming")
config = config or self.default_config
input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
async for token in self.llama_model.streamer(input_ids, **self._get_generation_kwargs(config)):
yield self.llama_tokenizer.decode([token])
def _get_generation_kwargs(self, config: GenerationConfig) -> Dict[str, Any]:
"""Get generation kwargs based on config."""
return {
"max_new_tokens": config.max_new_tokens,
"temperature": config.temperature,
"top_p": config.top_p,
"do_sample": config.temperature > 0,
}
def _load_quantized_model(self, model_path: str) -> Llama:
"""Load a quantized GGUF model using llama-cpp-python.
Args:
model_path (str): Path to the GGUF model file
Returns:
Llama: Loaded model instance
"""
try:
# Configure GPU layers if CUDA is available
n_gpu_layers = -1 if torch.cuda.is_available() else 0
# Load the model
model = Llama(
model_path=model_path,
n_ctx=2048, # Context window
n_batch=512, # Batch size for prompt processing
n_gpu_layers=n_gpu_layers, # Number of layers to offload to GPU
verbose=False
)
self.logger.info(f"Successfully loaded GGUF model from {model_path}")
return model
except Exception as e:
self.logger.error(f"Failed to load GGUF model: {str(e)}")
raise
def _score_with_prm(self, text: str) -> float:
"""Score text using the PRM model.
Args:
text (str): Text to score
Returns:
float: Model score
"""
try:
# For GGUF models, we need to use the proper scoring interface
result = self.prm_model.eval(text)
return result['logprobs'] # Or another appropriate scoring metric
except Exception as e:
self.logger.error(f"Error scoring text with PRM: {str(e)}")
return float('-inf') # Return very low score on error
def _construct_prompt(
self,
context: str,
user_input: str,
chat_history: List[Tuple[str, str]],
max_history_turns: int = 3
) -> str:
"""Construct a formatted prompt from the input components."""
system_message = f"Please assist based on the following context: {context}"
prompt = f"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system_message}<|eot_id|>"
for user_msg, assistant_msg in chat_history[-max_history_turns:]:
prompt += f"<|start_header_id|>user<|end_header_id|>\n\n{user_msg}<|eot_id|>"
prompt += f"<|start_header_id|>assistant<|end_header_id|>\n\n{assistant_msg}<|eot_id|>"
prompt += f"<|start_header_id|>user<|end_header_id|>\n\n{user_input}<|eot_id|>"
prompt += "<|start_header_id|>assistant<|end_header_id|>\n\n"
return prompt
def generate(
self,
prompt: str,
model_kwargs: Dict[str, Any],
strategy: str = "default",
num_samples: int = 5,
depth: int = 3,
breadth: int = 2
) -> str:
"""Generate a response using the specified strategy.
Args:
prompt (str): The input prompt
model_kwargs (dict): Additional arguments for model.generate()
strategy (str): Generation strategy ('default', 'majority_voting', 'best_of_n', 'beam_search', 'dvts')
num_samples (int): Number of samples for applicable strategies
depth (int): Depth for DVTS strategy
breadth (int): Breadth for DVTS strategy
Returns:
str: Generated response
"""
if strategy == "default":
input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
output = self.llama_model.generate(input_ids, **model_kwargs)
return self.llama_tokenizer.decode(output[0], skip_special_tokens=True)
elif strategy == "majority_voting":
outputs = []
for _ in range(num_samples):
input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
output = self.llama_model.generate(input_ids, **model_kwargs)
outputs.append(self.llama_tokenizer.decode(output[0], skip_special_tokens=True))
return max(set(outputs), key=outputs.count)
elif strategy == "best_of_n":
scored_outputs = []
for _ in range(num_samples):
input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
output = self.llama_model.generate(input_ids, **model_kwargs)
response = self.llama_tokenizer.decode(output[0], skip_special_tokens=True)
score = self.prm_model(**self.llama_tokenizer(response, return_tensors="pt").to(self.device)).logits.mean().item()
scored_outputs.append((response, score))
return max(scored_outputs, key=lambda x: x[1])[0]
elif strategy == "beam_search":
input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
outputs = self.llama_model.generate(
input_ids,
num_beams=num_samples,
num_return_sequences=num_samples,
**model_kwargs
)
return [self.llama_tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
elif strategy == "dvts":
results = []
for _ in range(breadth):
input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
output = self.llama_model.generate(input_ids, **model_kwargs)
response = self.llama_tokenizer.decode(output[0], skip_special_tokens=True)
score = self.prm_model(**self.llama_tokenizer(response, return_tensors="pt").to(self.device)).logits.mean().item()
results.append((response, score))
for _ in range(depth - 1):
best_responses = sorted(results, key=lambda x: x[1], reverse=True)[:breadth]
for response, _ in best_responses:
input_ids = self.llama_tokenizer(response, return_tensors="pt").input_ids.to(self.device)
output = self.llama_model.generate(input_ids, **model_kwargs)
extended_response = self.llama_tokenizer.decode(output[0], skip_special_tokens=True)
score = self.prm_model(**self.llama_tokenizer(extended_response, return_tensors="pt").to(self.device)).logits.mean().item()
results.append((extended_response, score))
return max(results, key=lambda x: x[1])[0]
else:
raise ValueError(f"Unknown strategy: {strategy}")
def generate_with_context(
self,
context: str,
user_input: str,
chat_history: List[Tuple[str, str]],
model_kwargs: Dict[str, Any],
max_history_turns: int = 3,
strategy: str = "default",
num_samples: int = 5,
depth: int = 3,
breadth: int = 2
) -> str:
"""Generate a response using context and chat history.
Args:
context (str): Context for the conversation
user_input (str): Current user input
chat_history (List[Tuple[str, str]]): List of (user, assistant) message pairs
model_kwargs (dict): Additional arguments for model.generate()
max_history_turns (int): Maximum number of history turns to include
strategy (str): Generation strategy
num_samples (int): Number of samples for applicable strategies
depth (int): Depth for DVTS strategy
breadth (int): Breadth for DVTS strategy
Returns:
str: Generated response
"""
prompt = self._construct_prompt(
context,
user_input,
chat_history,
max_history_turns
)
return self.generate(
prompt,
model_kwargs,
strategy,
num_samples,
depth,
breadth
)
######################
#########
#################
from fastapi import FastAPI, HTTPException, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from typing import List, Optional, Dict
import asyncio
import uuid
from datetime import datetime
import json
class ChatMessage(BaseModel):
role: str = Field(..., description="Role of the message sender (user/assistant)")
content: str = Field(..., description="Content of the message")
class GenerationRequest(BaseModel):
context: Optional[str] = Field(None, description="Context for the conversation")
messages: List[ChatMessage] = Field(..., description="Chat history")
config: Optional[Dict] = Field(None, description="Generation configuration")
stream: bool = Field(False, description="Whether to stream the response")
class GenerationResponse(BaseModel):
id: str = Field(..., description="Generation ID")
content: str = Field(..., description="Generated content")
created_at: datetime = Field(default_factory=datetime.now)
app = FastAPI(title="LLaMA Generation Service")
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Store generator instance
generator = None
@app.on_event("startup")
async def startup_event():
global generator
try:
generator = LlamaGenerator(
llama_model_name="meta-llama/Llama-3.2-1B-Instruct",
prm_model_path=prm_model_path,
default_generation_config=GenerationConfig(
max_new_tokens=100,
temperature=0.7
)
)
except Exception as e:
print(f"Failed to initialize generator: {str(e)}")
raise
@app.post("/generate", response_model=GenerationResponse)
async def generate(request: GenerationRequest):
if not generator:
raise HTTPException(status_code=503, detail="Generator not initialized")
try:
# Format chat history
chat_history = [(msg.role, msg.content) for msg in request.messages[:-1]]
user_input = request.messages[-1].content
# Create generation config
config = GenerationConfig(**request.config) if request.config else None
# Generate response
response = await asyncio.to_thread(
generator.generate_with_context,
context=request.context or "",
user_input=user_input,
chat_history=chat_history,
model_kwargs={}, # Add any model-specific kwargs here
config=config
)
return GenerationResponse(
id=str(uuid.uuid4()),
content=response
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.websocket("/generate/stream")
async def generate_stream(websocket):
await websocket.accept()
try:
while True:
# Receive and parse request
request_data = await websocket.receive_text()
request = GenerationRequest.parse_raw(request_data)
# Format chat history
chat_history = [(msg.role, msg.content) for msg in request.messages[:-1]]
user_input = request.messages[-1].content
# Create generation config
config = GenerationConfig(**request.config) if request.config else None
# Stream response
async for token in generator.generate_stream(
prompt=generator._construct_prompt(
context=request.context or "",
user_input=user_input,
chat_history=chat_history
),
config=config
):
await websocket.send_text(json.dumps({
"token": token,
"finished": False
}))
# Send finished message
await websocket.send_text(json.dumps({
"token": "",
"finished": True
}))
except Exception as e:
await websocket.send_text(json.dumps({
"error": str(e)
}))
finally:
await websocket.close()
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000) |