File size: 1,349 Bytes
018fb30
037c950
018fb30
 
037c950
c52adb8
037c950
 
 
 
 
018fb30
 
 
2b75a1c
018fb30
 
037c950
 
018fb30
 
037c950
 
018fb30
 
 
 
 
 
037c950
 
 
018fb30
 
 
037c950
 
018fb30
 
 
037c950
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import gradio as gr
import os
from langchain.vectorstores import Chroma
from langchain.document_loaders import PyPDFLoader
from langchain.embeddings import HuggingFaceInferenceAPIEmbeddings

# Use Hugging Face Inference API embeddings
inference_api_key = os.environ['hf']
api_hf_embeddings = HuggingFaceInferenceAPIEmbeddings(
    api_key=inference_api_key,
    model_name="sentence-transformers/all-MiniLM-l6-v2"
)

# Load and process the PDF files
loader = PyPDFLoader("./new_papers/ReACT.pdf")
documents = loader.load()

# Create Chroma vector store for API embeddings
api_db = Chroma.from_documents(documents, api_hf_embeddings, collection_name="api-collection")

class PDFRetrievalTool:
    def __init__(self, retriever):
        self.retriever = retriever

    def __call__(self, query):
        # Run the query through the retriever
        response = self.retriever.run(query)
        return response['result']

# Create Gradio interface for the API retriever
api_tool = gr.Interface(
    PDFRetrievalTool(api_db.as_retriever(search_kwargs={"k": 1})),
    inputs=gr.Textbox(),
    outputs=gr.Textbox(),
    live=True,
    title="API PDF Retrieval Tool",
    description="This tool indexes PDF documents and retrieves relevant answers based on a given query (HF Inference API Embeddings).",
)

# Launch the Gradio interface
api_tool.launch()