File size: 1,670 Bytes
cae3cb9
018fb30
 
 
f7493dd
037c950
d44faea
037c950
008f20f
037c950
 
 
018fb30
 
 
92b65f4
cbed288
c7297e1
f514bc9
c7297e1
18cb8f3
68b31c9
59caffa
403222a
 
88751a5
 
 
037c950
403222a
018fb30
05727e9
 
68b31c9
 
 
 
 
018fb30
68b31c9
037c950
 
68b31c9
 
018fb30
 
037c950
 
018fb30
 
 
037c950
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import os 
import gradio as gr
from langchain.vectorstores import Chroma
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceInferenceAPIEmbeddings
 
# Use Hugging Face Inference API embeddings
inference_api_key = os.environ['HF']
api_hf_embeddings = HuggingFaceInferenceAPIEmbeddings(
    api_key=inference_api_key,
    model_name="sentence-transformers/all-MiniLM-l6-v2"
)

# Load and process the PDF files
loader = PyPDFLoader("./new_papers/ReACT.pdf")
documents = loader.load()
print("-----------")
print(documents)
print("-----------")

# Load the document, split it into chunks, embed each chunk, and load it into the vector store.
text_splitter = CharacterTextSplitter(chunk_size=200, chunk_overlap=50)
vdocuments = text_splitter.split_documents(documents)




# Create Chroma vector store for API embeddings
api_db = Chroma.from_documents(vdocuments, api_hf_embeddings, collection_name="api-collection")

print(api_db.similarity_search("What is react"))

# Define the PDF retrieval function
def pdf_retrieval(query):
    # Run the query through the retriever
    response = api_db.similarity_search(query)
    return response

# Create Gradio interface for the API retriever
# Create Gradio interface for the API retriever
api_tool = gr.Interface(
    fn=pdf_retrieval,
    inputs=[gr.Textbox()],
    outputs=gr.Textbox(),
    live=True,
    title="API PDF Retrieval Tool",
    description="This tool indexes PDF documents and retrieves relevant answers based on a given query (HF Inference API Embeddings).",
)

# Launch the Gradio interface
api_tool.launch()