File size: 6,105 Bytes
12c661c b34502b 12c661c 94e19b7 360e8aa 8ce796d 12c661c cb907e8 04d563b 12590ae b940a49 e1945b7 04aca7f 273de61 12590ae 12c661c 360e8aa 8ce796d 12c661c b34502b 12c661c 2fc1932 8ce796d 2fc1932 8ce796d a6c5429 12c661c 8ce796d 12c661c 8ce796d 12c661c 7f01be6 3cf17c6 12c661c 0839158 12c661c bd9d10e 12c661c bd9d10e 12c661c bd9d10e 8ea7ad4 12c661c 8ea7ad4 12c661c b34502b b54046d e03f966 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import json
import os
import gradio as gr
import time
import langchain
from pydantic import BaseModel, Field
from typing import Any, Optional, Dict, List, Union
from huggingface_hub import InferenceClient
from langchain.llms.base import LLM
#from langchain.Images import Images
from langchain.llms.base import LLM
#from langchain_core.embeddings import EmbeddingFunction, Embeddings
from langchain.embeddings import HuggingFaceInstructEmbeddings
#from langchain import [all]
#from langchain.Documents import Documents
from langchain.vectorstores import Chroma
from dotenv import load_dotenv
from transformers import AutoTokenizer, AutoModel, Tool
load_dotenv()
path_work = "."
hf_token = os.getenv("HF")
class HuggingFaceInstructEmbeddings(HuggingFaceInstructEmbeddings):
def __init__(self, model_name: str, model_kwargs: Optional[Dict[str, Any]] = None):
self.model = AutoModel.from_pretrained(model_name, **(model_kwargs or {}))
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
def __call__(self, input: Union[Documents]) -> HuggingFaceInstructEmbeddings:
if isinstance(input, Documents):
texts = [doc.text for doc in input]
embeddings = self._embed_text(texts)
else:
# Handle image embeddings if needed
pass
return embeddings
def _embed_text(self, texts: List[str]) -> Embeddings:
# Your existing logic for text embeddings using Hugging Face models...
inputs = self.tokenizer(texts, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = self.model(**inputs)
embeddings = outputs.last_hidden_state.mean(dim=1) # Adjust this based on your specific model
return embeddings
vectordb = Chroma(
persist_directory=path_work + '/new_papers',
embedding_function=HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"})
)
retriever = vectordb.as_retriever(search_kwargs={"k": 2})#5
class KwArgsModel(BaseModel):
kwargs: Dict[str, Any] = Field(default_factory=dict)
class CustomInferenceClient(LLM, KwArgsModel):
model_name: str
inference_client: InferenceClient
def __init__(self, model_name: str, hf_token: str, kwargs: Optional[Dict[str, Any]] = None):
inference_client = InferenceClient(model=model_name, token=hf_token)
super().__init__(
model_name=model_name,
hf_token=hf_token,
kwargs=kwargs,
inference_client=inference_client
)
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None
) -> str:
if stop is not None:
raise ValueError("stop kwargs are not permitted.")
response_gen = self.inference_client.text_generation(prompt, **self.kwargs, stream=True)
response = ''.join(response_gen)
return response
@property
def _llm_type(self) -> str:
return "custom"
@property
def _identifying_params(self) -> dict:
return {"model_name": self.model_name}
kwargs = {"max_new_tokens": 256, "temperature": 0.9, "top_p": 0.6, "repetition_penalty": 1.3, "do_sample": True}
model_list = [
"meta-llama/Llama-2-13b-chat-hf",
"HuggingFaceH4/zephyr-7b-alpha",
"meta-llama/Llama-2-70b-chat-hf",
"tiiuae/falcon-180B-chat"
]
qa_chain = None
def load_model(model_selected):
global qa_chain
model_name = model_selected
llm = CustomInferenceClient(model_name=model_name, hf_token=hf_token, kwargs=kwargs)
from langchain.chains import RetrievalQA
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True,
verbose=True,
)
return qa_chain
load_model("meta-llama/Llama-2-70b-chat-hf")
##########
#####
#########
###
###
###
def predict(message, temperature=0.9, max_new_tokens=512, top_p=0.6, repetition_penalty=1.3):
temperature = float(temperature)
if temperature < 1e-2: temperature = 1e-2
top_p = float(top_p)
llm_response = qa_chain(message)
res_result = llm_response['result']
res_relevant_doc = [source.metadata['source'] for source in llm_response["source_documents"]]
response = f"{res_result}" + "\n\n" + "[Answer Source Documents (Ctrl + Click!)] :" + "\n" + f" \n {res_relevant_doc}"
print("response: =====> \n", response, "\n\n")
tokens = response.split('\n')
token_list = []
for idx, token in enumerate(tokens):
token_dict = {"id": idx + 1, "text": token}
token_list.append(token_dict)
response = {"data": {"token": token_list}}
response = json.dumps(response, indent=4)
response = json.loads(response)
data_dict = response.get('data', {})
token_list = data_dict.get('token', [])
partial_message = ""
for token_entry in token_list:
if token_entry:
try:
token_id = token_entry.get('id', None)
token_text = token_entry.get('text', None)
if token_text:
for char in token_text:
partial_message += char
yield partial_message
time.sleep(0.01)
else:
print(f"Warning ==> The key 'text' does not exist or is None in this token entry: {token_entry}")
pass
except KeyError as e:
gr.Warning(f"KeyError: {e} occurred for token entry: {token_entry}")
continue
class TextGeneratorTool(Tool):
name = "vector_retriever"
description = "This tool searches in a vector store based on a given prompt."
inputs = ["prompt"]
outputs = ["generated_text"]
def __init__(self):
#self.retriever = db.as_retriever(search_kwargs={"k": 1})
pass # You might want to add some initialization logic here
def __call__(self, prompt: str):
result = predict(prompt, 0.9, 512, 0.6, 1.4)
return result
|