File size: 1,612 Bytes
018fb30
037c950
018fb30
 
f7493dd
 
037c950
c52adb8
037c950
008f20f
037c950
 
 
018fb30
 
 
68b31c9
cbed288
c7297e1
f514bc9
c7297e1
18cb8f3
68b31c9
403222a
 
 
037c950
403222a
018fb30
68b31c9
 
 
 
 
018fb30
68b31c9
037c950
 
68b31c9
 
018fb30
 
037c950
 
018fb30
 
 
037c950
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import gradio as gr
import os
from langchain.vectorstores import Chroma
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import CharacterTextSplitter

from langchain.embeddings import HuggingFaceInferenceAPIEmbeddings

# Use Hugging Face Inference API embeddings
inference_api_key = os.environ['HF']
api_hf_embeddings = HuggingFaceInferenceAPIEmbeddings(
    api_key=inference_api_key,
    model_name="sentence-transformers/all-MiniLM-l6-v2"
)

# Load and process the PDF files
loader = PyPDFLoader("/content/ReACT.pdf")
documents = loader.load()
print("-----------")
print(documents)
print("-----------")

# Load the document, split it into chunks, embed each chunk, and load it into the vector store.
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
vdocuments = text_splitter.split_documents(documents)

# Create Chroma vector store for API embeddings
api_db = Chroma.from_documents(vdocuments, api_hf_embeddings, collection_name="api-collection")

# Define the PDF retrieval function
def pdf_retrieval(query):
    # Run the query through the retriever
    response = api_db.similarity_search(query)
    return response

# Create Gradio interface for the API retriever
# Create Gradio interface for the API retriever
api_tool = gr.Interface(
    fn=pdf_retrieval,
    inputs=[gr.Textbox()],
    outputs=gr.Textbox(),
    live=True,
    title="API PDF Retrieval Tool",
    description="This tool indexes PDF documents and retrieves relevant answers based on a given query (HF Inference API Embeddings).",
)

# Launch the Gradio interface
api_tool.launch()