Spaces:
Sleeping
Sleeping
import requests | |
from transformers import Tool | |
from transformers import pipeline | |
class TextGenerationTool(Tool): | |
name = "text_generator" | |
description = ( | |
"This is a tool for text generation. It takes a prompt as input and returns the generated text." | |
) | |
inputs = ["text"] | |
outputs = ["text"] | |
def __call__(self, prompt: str): | |
API_URL = "https://api-inference.huggingface.co/models/lukasdrg/clinical_longformer_same_tokens_220k" | |
headers = {"Authorization": "Bearer "+os.environ['HF']+"} | |
#def query(payload): | |
generated_text = requests.post(API_URL, headers=headers, json=payload) | |
# return response.json() | |
#output = query({ | |
# "inputs": "The answer to the universe is <mask>.", | |
#}) | |
# Replace the following line with your text generation logic | |
#generated_text = f"Generated text based on the prompt: '{prompt}'" | |
# Initialize the text generation pipeline | |
#text_generator = pipeline("text-generation") llama mistralai/Mistral-7B-Instruct-v0.1 | |
#text_generator = pipeline(model="gpt2") | |
#text_generator = pipeline(model="meta-llama/Llama-2-7b-chat-hf") | |
# Generate text based on a prompt | |
#generated_text = text_generator(prompt, max_length=500, num_return_sequences=1, temperature=0.7) | |
# Print the generated text | |
#print(generated_text) | |
return generated_text | |