Spaces:
Sleeping
Sleeping
import requests | |
class SentimentAnalysisTool: | |
name = "sentiment_analysis" | |
description = "This tool analyses the sentiment of a given text input." | |
inputs = ["text"] # Adding an empty list for inputs | |
outputs = ["json"] | |
model_id_1 = "nlptown/bert-base-multilingual-uncased-sentiment" | |
model_id_2 = "microsoft/deberta-xlarge-mnli" | |
model_id_3 = "distilbert-base-uncased-finetuned-sst-2-english" | |
model_id_4 = "lordtt13/emo-mobilebert" | |
model_id_5 = "juliensimon/reviews-sentiment-analysis" | |
model_id_6 = "sbcBI/sentiment_analysis_model" | |
model_id_7 = "models/oliverguhr/german-sentiment-bert" | |
def parse_output(output_json): | |
list_pred=[] | |
for i in range(len(output_json[0])): | |
label = output_json[0][i]['label'] | |
score = output_json[0][i]['score'] | |
list_pred.append((label, score)) | |
return list_pred | |
def get_prediction(model_id): | |
classifier = pipeline("text-classification", model=model_id, return_all_scores=True) | |
def predict(review): | |
classifier = get_prediction(model_id_7) | |
prediction = classifier(review) | |
print(prediction) | |
return parse_output(prediction) | |
def __call__(self, inputs: str): | |
return predict(str) | |