File size: 6,236 Bytes
019ce84
 
 
 
 
 
 
 
 
3dc1be7
 
 
 
 
019ce84
 
 
3dc1be7
 
 
019ce84
76c4015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98365f5
76c4015
019ce84
836fba6
6a7c16e
 
 
 
 
98365f5
6a7c16e
 
 
 
 
 
 
 
 
 
019ce84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98365f5
 
019ce84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98365f5
019ce84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98365f5
019ce84
 
 
 
 
 
98365f5
019ce84
 
 
98365f5
019ce84
 
 
 
 
98365f5
019ce84
 
 
 
 
98365f5
 
019ce84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff57fcc
019ce84
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import cv2
import numpy as np
import glob
from os.path import isfile, join
import subprocess
import os
import shutil
from io import BytesIO
import io
from RealESRGAN import RealESRGAN
import torch
from PIL import Image
import numpy as np


IMAGE_FORMATS = ('.png', '.jpg', '.jpeg', '.tiff', '.bmp', '.gif')

cap = cv2.VideoCapture(video)
fps = cap.get(cv2.CAP_PROP_FPS)


def inference_image(image, size):
    global model2
    global model4
    global model8
    if image is None:
        raise gr.Error("Image not uploaded")

    width, height = image.size
    if width >= 5000 or height >= 5000:
        raise gr.Error("The image is too large.")

    if torch.cuda.is_available():
        torch.cuda.empty_cache()

    if size == '2x':
        try:
            result = model2.predict(image.convert('RGB'))
        except torch.cuda.OutOfMemoryError as e:
            print(e)
            model2 = RealESRGAN(device, scale=2)
            model2.load_weights('weights/RealESRGAN_x2.pth', download=False)
            result = model2.predict(image.convert('RGB'))
    elif size == '4x':
        try:
            result = model4.predict(image.convert('RGB'))
        except torch.cuda.OutOfMemoryError as e:
            print(e)
            model4 = RealESRGAN(device, scale=4)
            model4.load_weights('weights/RealESRGAN_x4.pth', download=False)
            result = model2.predict(image.convert('RGB'))
    else:
        try:
            result = model8.predict(image.convert('RGB'))
        except torch.cuda.OutOfMemoryError as e:
            print(e)
            model8 = RealESRGAN(device, scale=8)
            model8.load_weights('weights/RealESRGAN_x8.pth', download=False)
            result = model2.predict(image.convert('RGB'))

    print(f"Frame of the Video size ({device}): {size} ... OK")
    return result


custom_name = "input.mp4"

def save_video_input(video, custom_name):
    try:
        # Specify the desired output file path with the custom name and ".mp4" extension
        output_file_path = f"/tmp/videos/{custom_name}.mp4"

        # Save the video input to the specified file path
        with open(output_file_path, 'wb') as output_file:
            output_file.write(video_input)
        print(f"Video input saved as {output_file_path}")
    except Exception as e:
        print(f"Error saving video input: {str(e)}")




# assign directory
directory = 'videos' #PATH_WITH_INPUT_VIDEOS
zee = 0

def convert_frames_to_video(pathIn,pathOut,fps):
    frame_array = []
    files = [f for f in os.listdir(pathIn) if isfile(join(pathIn, f))]
    #for sorting the file names properly
    files.sort(key = lambda x: int(x[5:-4]))
    size2 = (0,0)

    for i in range(len(files)):
        filename=pathIn + files[i]
        #reading each files
        img = cv2.imread(filename)
        height, width, layers = img.shape
        size = (width,height)
        size2 = size
        print(filename)
        #inserting the frames into an image array
        frame_array.append(img)
    out = cv2.VideoWriter(pathOut,cv2.VideoWriter_fourcc(*'DIVX'), fps, size2)
    for i in range(len(frame_array)):
        # writing to a image array
        out.write(frame_array[i])
    out.release()


for filename in os.listdir(directory):

    f = os.path.join(directory, filename)
    # checking if it is a file
    if os.path.isfile(f):


      print("PROCESSING :"+str(f)+"\n")
      # Read the video from specified path

      #video to frames
      cam = cv2.VideoCapture(str(f))

      try:

          # PATH TO STORE VIDEO FRAMES
          if not os.path.exists('/tmp/upload/'):
              os.makedirs('/tmp/upload/')

      # if not created then raise error
      except OSError:
          print ('Error: Creating directory of data')

      # frame
      currentframe = 0


      while(True):

          # reading from frame
          ret,frame = cam.read()

          if ret:
              # if video is still left continue creating images
              name = '/tmp/upload/frame' + str(currentframe) + '.jpg'

              # writing the extracted images
              cv2.imwrite(name, frame)


                # increasing counter so that it will
                # show how many frames are created
              currentframe += 1
              print(currentframe)
          else:
              #deletes all the videos you uploaded for upscaling
              #for f in os.listdir(video_folder):
              #  os.remove(os.path.join(video_folder, f))

              break

        # Release all space and windows once done
      cam.release()
      cv2.destroyAllWindows()

      #apply super-resolution on all frames of a video

      # Specify the directory path
      all_frames_path = "/tmp/upload/"

      # Get a list of all files in the directory
      file_names = os.listdir(all_frames_path)

      # process the files
      for file_name in file_names:
        inference_image(f"/tmp/upload/{file_name}")


      #convert super res frames to .avi
      pathIn = '/tmp/results/restored_imgs/'

      zee = zee+1
      fName = "video"+str(zee)
      filenameVid = f"{fName}.avi"

      pathOut = "/tmp/results_videos/"+filenameVid

      convert_frames_to_video(pathIn, pathOut, fps)


      #convert .avi to .mp4
      src = '/tmp/results_videos/'
      dst = '/tmp/results_mp4_videos/'

      for root, dirs, filenames in os.walk(src, topdown=False):
          #print(filenames)
          for filename in filenames:
              print('[INFO] 1',filename)
              try:
                  _format = ''
                  if ".flv" in filename.lower():
                      _format=".flv"
                  if ".mp4" in filename.lower():
                      _format=".mp4"
                  if ".avi" in filename.lower():
                      _format=".avi"
                  if ".mov" in filename.lower():
                      _format=".mov"

                  inputfile = os.path.join(root, filename)
                  print('[INFO] 1',inputfile)
                  outputfile = os.path.join(dst, filename.lower().replace(_format, ".mp4"))
                  subprocess.call(['ffmpeg', '-i', inputfile, outputfile])
              except:
                  print("An exception occurred")