Spaces:
Sleeping
Sleeping
# Load model directly | |
from transformers import AutoModelForImageTextToText, TrOCRProcessor | |
import torch | |
from PIL import Image | |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-printed") | |
model = AutoModelForImageTextToText.from_pretrained("ChronoStellar/TrOCR_IndonesianLPR") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
import gradio as gr | |
from PIL import Image | |
import torch | |
# Assuming model, processor, and device are already defined | |
def OCR(pil_image, model=model, processor=processor, device=device): | |
# Prepare image for the model | |
pixel_values = processor(pil_image, return_tensors="pt").pixel_values | |
# Move the input to the appropriate device (CPU/GPU) | |
pixel_values = pixel_values.to(device) | |
# Generate prediction | |
model.eval() # Set the model to evaluation mode | |
with torch.no_grad(): # Disable gradient calculation for inference | |
generated_ids = model.generate(pixel_values) | |
# Decode the predicted IDs to get the text | |
predicted_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return predicted_text | |
# Create Gradio interface | |
interface = gr.Interface( | |
fn=OCR, | |
inputs=gr.Image(type="pil", label="Upload License Plate Image"), | |
outputs=gr.Textbox(label="Predicted License Plate"), | |
title="Automatic License Plate Recognition", | |
description="Upload an image of a license plate, and the system will predict the text on it.", | |
) | |
# Launch the Gradio app | |
interface.launch() | |