Spaces:
Runtime error
Runtime error
import streamlit as st # Streamlit library to create the web interface | |
import numpy as np # Library for numerical operations | |
import google.generativeai as genai # Gemini API for AI-generated explanations | |
# Import necessary computer vision functions | |
from skimage.filters import sobel | |
from skimage.segmentation import watershed | |
from skimage.feature import canny, hog | |
from skimage.color import rgb2gray | |
from skimage import io | |
from sklearn.preprocessing import StandardScaler | |
from sklearn.ensemble import RandomForestClassifier | |
from sklearn.linear_model import LogisticRegression | |
import matplotlib.pyplot as plt # For better visualization | |
# Load Gemini API key from Streamlit Secrets configuration | |
api_key = st.secrets["gemini"]["api_key"] | |
genai.configure(api_key=api_key) | |
MODEL_ID = "gemini-1.5-flash" | |
gen_model = genai.GenerativeModel(MODEL_ID) | |
def explain_ai(prompt): | |
"""Generate an explanation using Gemini API with error handling.""" | |
try: | |
response = gen_model.generate_content(prompt) | |
return response.text | |
except Exception as e: | |
return f"Error: {str(e)}" | |
# App title | |
st.title("Imaize: Smart Image Analyzer with XAI") | |
# Image upload section | |
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"]) | |
# App Description | |
st.markdown(""" | |
This app combines AI-powered image analysis techniques with an easy-to-use interface for explanation generation. | |
It leverages advanced computer vision algorithms such as **edge detection**, **image segmentation**, and **feature extraction**. | |
Additionally, the app provides **explanations** for each method used, powered by the Gemini API, to make the process more understandable. | |
""") | |
# Instructions for using the app | |
st.markdown(""" | |
### How to Use the App: | |
1. **Upload an Image**: Click on the "Upload an image" button to upload an image (in JPG, PNG, or JPEG format). | |
2. **Edge Detection**: Choose between **Canny** or **Sobel** edge detection methods. | |
3. **Segmentation**: Select **Watershed** or **Thresholding** segmentation. | |
4. **Extract HOG Features**: Visualize the Histogram of Oriented Gradients (HOG) features. | |
5. **AI Classification**: Classify the image using Random Forest or Logistic Regression models. | |
6. **Read the Explanations**: For each technique, you'll find a detailed explanation generated by AI. | |
""") | |
# If an image is uploaded, proceed with the analysis | |
if uploaded_file is not None: | |
image = io.imread(uploaded_file) | |
if image.shape[-1] == 4: # If the image has 4 channels (RGBA), remove the alpha channel | |
image = image[:, :, :3] | |
# Convert to grayscale | |
gray = rgb2gray(image) | |
# Normalize grayscale image to make it visible (if it's in float range 0-1) | |
gray_normalized = (gray * 255).astype(np.uint8) # Convert grayscale image to 8-bit format | |
# Display uploaded image | |
st.image(image, caption="Uploaded Image", use_container_width=True) | |
# Edge Detection Section | |
st.subheader("Edge Detection") | |
edge_method = st.selectbox("Select Edge Detection Method", ["Canny", "Sobel"], key="edge") | |
edges = canny(gray) if edge_method == "Canny" else sobel(gray) | |
edges = (edges * 255).astype(np.uint8) # Convert edge map to 8-bit image format | |
col1, col2 = st.columns([1, 1]) | |
with col1: | |
st.image(edges, caption=f"{edge_method} Edge Detection", use_container_width=True) | |
with col2: | |
st.write("### Explanation") | |
explanation = explain_ai(f"Explain how {edge_method} edge detection works in computer vision.") | |
st.text_area("Explanation", explanation, height=300) | |
# Segmentation Section | |
st.subheader("Segmentation") | |
seg_method = st.selectbox("Select Segmentation Method", ["Watershed", "Thresholding"], key="seg") | |
if seg_method == "Watershed": | |
elevation_map = sobel(gray) | |
markers = np.zeros_like(gray) | |
markers[gray < 0.3] = 1 | |
markers[gray > 0.7] = 2 | |
segmented = watershed(elevation_map, markers.astype(np.int32)) | |
else: | |
threshold_value = st.slider("Choose threshold value", 0, 255, 127) | |
segmented = (gray > (threshold_value / 255)).astype(np.uint8) * 255 | |
# Normalize segmented result for better visibility | |
segmented_normalized = (segmented * 255).astype(np.uint8) | |
col1, col2 = st.columns([1, 1]) | |
with col1: | |
st.image(segmented_normalized, caption=f"{seg_method} Segmentation", use_container_width=True) | |
with col2: | |
st.write("### Explanation") | |
explanation = explain_ai(f"Explain how {seg_method} segmentation works in image processing.") | |
st.text_area("Explanation", explanation, height=300) | |
# HOG Feature Extraction Section | |
st.subheader("HOG Feature Extraction") | |
fd, hog_image = hog(gray, pixels_per_cell=(8, 8), cells_per_block=(2, 2), visualize=True) | |
# Normalize HOG image for display | |
hog_image = (hog_image * 255).astype(np.uint8) | |
col1, col2 = st.columns([1, 1]) | |
with col1: | |
st.image(hog_image, caption="HOG Features", use_container_width=True) | |
with col2: | |
st.write("### Explanation") | |
explanation = explain_ai("Explain how Histogram of Oriented Gradients (HOG) feature extraction works.") | |
st.text_area("Explanation", explanation, height=300) | |
# AI Classification Section | |
st.subheader("AI Classification") | |
model_choice = st.selectbox("Select AI Model", ["Random Forest", "Logistic Regression"], key="model") | |
flat_image = gray.flatten().reshape(-1, 1) | |
labels = (flat_image > 0.5).astype(int).flatten() | |
ai_model = RandomForestClassifier(n_jobs=1) if model_choice == "Random Forest" else LogisticRegression() | |
scaler = StandardScaler() | |
flat_image_scaled = scaler.fit_transform(flat_image) | |
ai_model.fit(flat_image_scaled, labels) | |
predictions = ai_model.predict(flat_image_scaled).reshape(gray.shape) | |
predictions = (predictions * 255).astype(np.uint8) | |
col1, col2 = st.columns([1, 1]) | |
with col1: | |
st.image(predictions, caption=f"{model_choice} Pixel Classification", use_container_width=True) | |
with col2: | |
st.write("### Explanation") | |
explanation = explain_ai(f"Explain how {model_choice} is used for image classification.") | |
st.text_area("Explanation", explanation, height=300) | |