Spaces:
Sleeping
Sleeping
Aggiunta Pstroe model per compare
Browse files
app.py
CHANGED
@@ -32,6 +32,13 @@ tokenizer_robertaclasscat = AutoTokenizer.from_pretrained("ClassCat/roberta-base
|
|
32 |
model_robertaclasscat = AutoModelForMaskedLM.from_pretrained("ClassCat/roberta-base-latin-v2")
|
33 |
fill_mask_robertaclasscat = pipeline("fill-mask", model=model_robertaclasscat, tokenizer=tokenizer_robertaclasscat)
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
tokenizer = AutoTokenizer.from_pretrained(modelname)
|
36 |
model = AutoModelForMaskedLM.from_pretrained(modelname)
|
37 |
fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer)
|
@@ -45,8 +52,12 @@ if input_text:
|
|
45 |
st.write(f"**Parola**: {pred['token_str']}, **Probabilità**: {pred['score']:.4f}, **Sequence**: {pred['sequence']}")
|
46 |
input_text_roberta = input_text.replace("[MASK]", "<mask>")
|
47 |
predictions_robertaclasscat = fill_mask_robertaclasscat(input_text_roberta)
|
48 |
-
st.subheader("Risultati delle previsioni con Roberta:")
|
49 |
for pred_robertaclasscat in predictions_robertaclasscat:
|
50 |
st.write(f"**Parola**: {pred_robertaclasscat['token_str']}, **Probabilità**: {pred_robertaclasscat['score']:.4f}, **Sequence**: {pred_robertaclasscat['sequence']}")
|
|
|
|
|
|
|
|
|
51 |
|
52 |
|
|
|
32 |
model_robertaclasscat = AutoModelForMaskedLM.from_pretrained("ClassCat/roberta-base-latin-v2")
|
33 |
fill_mask_robertaclasscat = pipeline("fill-mask", model=model_robertaclasscat, tokenizer=tokenizer_robertaclasscat)
|
34 |
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
tokenizer_robertapstroe = AutoTokenizer.from_pretrained("pstroe/roberta-base-latin-cased")
|
39 |
+
model_robertapstroe = AutoModelForMaskedLM.from_pretrained("pstroe/roberta-base-latin-cased")
|
40 |
+
fill_mask_robertapstroe = pipeline("fill-mask", model=model_robertapstroe, tokenizer=tokenizer_robertapstroe)
|
41 |
+
|
42 |
tokenizer = AutoTokenizer.from_pretrained(modelname)
|
43 |
model = AutoModelForMaskedLM.from_pretrained(modelname)
|
44 |
fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer)
|
|
|
52 |
st.write(f"**Parola**: {pred['token_str']}, **Probabilità**: {pred['score']:.4f}, **Sequence**: {pred['sequence']}")
|
53 |
input_text_roberta = input_text.replace("[MASK]", "<mask>")
|
54 |
predictions_robertaclasscat = fill_mask_robertaclasscat(input_text_roberta)
|
55 |
+
st.subheader("Risultati delle previsioni con Roberta ClassCat:")
|
56 |
for pred_robertaclasscat in predictions_robertaclasscat:
|
57 |
st.write(f"**Parola**: {pred_robertaclasscat['token_str']}, **Probabilità**: {pred_robertaclasscat['score']:.4f}, **Sequence**: {pred_robertaclasscat['sequence']}")
|
58 |
+
predictions_robertapstroe = fill_mask_robertapstroe(input_text_roberta)
|
59 |
+
st.subheader("Risultati delle previsioni con Roberta Pstroe:")
|
60 |
+
for pred_robertapstroe in predictions_robertapstroe:
|
61 |
+
st.write(f"**Parola**: {pred_robertapstroe['token_str']}, **Probabilità**: {pred_robertapstroe['score']:.4f}, **Sequence**: {pred_robertapstroe['sequence']}")
|
62 |
|
63 |
|