DarkIR / archs /network.py
danifei's picture
add archs folder
d960e2d verified
raw
history blame
4.42 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
import functools
try:
from .arch_util import EBlock, Attention_Light
from .arch_util_freq import EBlock_freq
except:
from arch_util import EBlock, Attention_Light
from arch_util_freq import EBlock_freq
class Network(nn.Module):
def __init__(self, img_channel=3,
width=16,
middle_blk_num=1,
enc_blk_nums=[],
dec_blk_nums=[],
dilations = [1],
extra_depth_wise = False):
super(Network, self).__init__()
self.intro = nn.Conv2d(in_channels=img_channel, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1,
bias=True)
self.ending = nn.Conv2d(in_channels=width, out_channels=img_channel, kernel_size=3, padding=1, stride=1, groups=1,
bias=True)
self.encoders = nn.ModuleList()
self.decoders = nn.ModuleList()
self.middle_blks = nn.ModuleList()
self.ups = nn.ModuleList()
self.downs = nn.ModuleList()
chan = width
for num in enc_blk_nums:
self.encoders.append(
nn.Sequential(
*[EBlock(chan, dilations = dilations, extra_depth_wise=extra_depth_wise) for _ in range(num)]
)
)
self.downs.append(
nn.Conv2d(chan, 2*chan, 2, 2)
)
chan = chan * 2
self.middle_blks = \
nn.Sequential(
*[EBlock(chan, dilations = dilations, extra_depth_wise=extra_depth_wise) for _ in range(middle_blk_num)]
)
for num in dec_blk_nums:
self.ups.append(
nn.Sequential(
nn.Conv2d(chan, chan * 2, 1, bias=False),
nn.PixelShuffle(2)
)
)
chan = chan // 2
self.decoders.append(
nn.Sequential(
*[EBlock(chan, extra_depth_wise=extra_depth_wise) for _ in range(num)]
)
)
self.padder_size = 2 ** len(self.encoders)
#define the attention layers
# self.recon_trunk_light = nn.Sequential(*[FBlock(c = chan * self.padder_size,
# DW_Expand=2, FFN_Expand=2, dilations = dilations,
# extra_depth_wise = False) for i in range(residual_layers)])
# ResidualBlock_noBN_f = functools.partial(ResidualBlock_noBN, nf = width * self.padder_size)
# self.recon_trunk_light = make_layer(ResidualBlock_noBN_f, residual_layers)
def forward(self, input):
_, _, H, W = input.shape
x = self.intro(input)
encs = []
# i = 0
for encoder, down in zip(self.encoders, self.downs):
x = encoder(x)
# print(i, x.shape)
encs.append(x)
x = down(x)
# i += 1
x = self.middle_blks(x)
# print('3', x.shape)
# apply the mask
# x = x * mask
# x = self.recon_trunk_light(x)
for decoder, up, enc_skip in zip(self.decoders, self.ups, encs[::-1]):
x = up(x)
x = x + enc_skip
x = decoder(x)
x = self.ending(x)
x = x + input
return x[:, :, :H, :W]
if __name__ == '__main__':
img_channel = 3
width = 32
enc_blks = [1, 2, 3]
middle_blk_num = 3
dec_blks = [3, 1, 1]
residual_layers = 2
dilations = [1, 4]
net = Network(img_channel=img_channel,
width=width,
middle_blk_num=middle_blk_num,
enc_blk_nums=enc_blks,
dec_blk_nums=dec_blks,
dilations = dilations)
# NAF = NAFNet(img_channel=img_channel, width=width, middle_blk_num=middle_blk_num,
# enc_blk_nums=enc_blks, dec_blk_nums=dec_blks)
inp_shape = (3, 256, 256)
from ptflops import get_model_complexity_info
macs, params = get_model_complexity_info(net, inp_shape, verbose=False, print_per_layer_stat=False)
print(macs, params)
inp = torch.randn(1, 3, 256, 256)
out = net(inp)