Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
try: | |
from .arch_util import LayerNorm2d | |
from .local_arch import Local_Base | |
except: | |
from arch_util import LayerNorm2d | |
from local_arch import Local_Base | |
class SimpleGate(nn.Module): | |
def forward(self, x): | |
x1, x2 = x.chunk(2, dim=1) | |
return x1 * x2 | |
class NAFBlock(nn.Module): | |
def __init__(self, c, DW_Expand=2, FFN_Expand=2, drop_out_rate=0.): | |
super().__init__() | |
dw_channel = c * DW_Expand | |
self.conv1 = nn.Conv2d(in_channels=c, out_channels=dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) | |
self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel, | |
bias=True) # the dconv | |
self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True) | |
# Simplified Channel Attention | |
self.sca = nn.Sequential( | |
nn.AdaptiveAvgPool2d(1), | |
nn.Conv2d(in_channels=dw_channel // 2, out_channels=dw_channel // 2, kernel_size=1, padding=0, stride=1, | |
groups=1, bias=True), | |
) | |
# SimpleGate | |
self.sg = SimpleGate() | |
ffn_channel = FFN_Expand * c | |
self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) | |
self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True) | |
self.norm1 = LayerNorm2d(c) | |
self.norm2 = LayerNorm2d(c) | |
self.dropout1 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity() | |
self.dropout2 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity() | |
self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) | |
self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) | |
def forward(self, inp): | |
x = inp # size [B, C, H, W] | |
x = self.norm1(x) # size [B, C, H, W] | |
x = self.conv1(x) # size [B, 2*C, H, W] | |
x = self.conv2(x) # size [B, 2*C, H, W] | |
x = self.sg(x) # size [B, C, H, W] | |
x = x * self.sca(x) # size [B, C, H, W] | |
x = self.conv3(x) # size [B, C, H, W] | |
x = self.dropout1(x) | |
y = inp + x * self.beta # size [B, C, H, W] | |
x = self.conv4(self.norm2(y)) # size [B, 2*C, H, W] | |
x = self.sg(x) # size [B, C, H, W] | |
x = self.conv5(x) # size [B, C, H, W] | |
x = self.dropout2(x) | |
return y + x * self.gamma | |
class NAFNet(nn.Module): | |
def __init__(self, img_channel=3, width=16, middle_blk_num=1, enc_blk_nums=[], dec_blk_nums=[]): | |
super().__init__() | |
self.intro = nn.Conv2d(in_channels=img_channel, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1, | |
bias=True) | |
self.ending = nn.Conv2d(in_channels=width, out_channels=img_channel, kernel_size=3, padding=1, stride=1, groups=1, | |
bias=True) | |
self.encoders = nn.ModuleList() | |
self.decoders = nn.ModuleList() | |
self.middle_blks = nn.ModuleList() | |
self.ups = nn.ModuleList() | |
self.downs = nn.ModuleList() | |
chan = width | |
for num in enc_blk_nums: | |
self.encoders.append( | |
nn.Sequential( | |
*[NAFBlock(chan) for _ in range(num)] | |
) | |
) | |
self.downs.append( | |
nn.Conv2d(chan, 2*chan, 2, 2) | |
) | |
chan = chan * 2 | |
self.middle_blks = \ | |
nn.Sequential( | |
*[NAFBlock(chan) for _ in range(middle_blk_num)] | |
) | |
for num in dec_blk_nums: | |
self.ups.append( | |
nn.Sequential( | |
nn.Conv2d(chan, chan * 2, 1, bias=False), | |
nn.PixelShuffle(2) | |
) | |
) | |
chan = chan // 2 | |
self.decoders.append( | |
nn.Sequential( | |
*[NAFBlock(chan) for _ in range(num)] | |
) | |
) | |
self.padder_size = 2 ** len(self.encoders) | |
def forward(self, inp): | |
B, C, H, W = inp.shape | |
inp = self.check_image_size(inp) | |
x = self.intro(inp) | |
encs = [] | |
for encoder, down in zip(self.encoders, self.downs): | |
x = encoder(x) | |
encs.append(x) | |
x = down(x) | |
x = self.middle_blks(x) | |
for decoder, up, enc_skip in zip(self.decoders, self.ups, encs[::-1]): | |
x = up(x) | |
x = x + enc_skip | |
x = decoder(x) | |
x = self.ending(x) | |
x = x + inp | |
return x[:, :, :H, :W] | |
def check_image_size(self, x): | |
_, _, h, w = x.size() | |
mod_pad_h = (self.padder_size - h % self.padder_size) % self.padder_size | |
mod_pad_w = (self.padder_size - w % self.padder_size) % self.padder_size | |
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), value = 0) | |
return x | |
class NAFNetLocal(Local_Base, NAFNet): | |
def __init__(self, *args, train_size=(1, 3, 256, 256), fast_imp=False, **kwargs): | |
Local_Base.__init__(self) | |
NAFNet.__init__(self, *args, **kwargs) | |
N, C, H, W = train_size | |
base_size = (int(H * 1.5), int(W * 1.5)) | |
self.eval() | |
with torch.no_grad(): | |
self.convert(base_size=base_size, train_size=train_size, fast_imp=fast_imp) | |
class FreBlock(nn.Module): | |
def __init__(self, nc): | |
super(FreBlock, self).__init__() | |
self.fpre = nn.Conv2d(nc, nc, 1, 1, 0) | |
self.process1 = nn.Sequential( | |
nn.Conv2d(nc, nc, 1, 1, 0), | |
nn.LeakyReLU(0.1, inplace=True), | |
nn.Conv2d(nc, nc, 1, 1, 0)) | |
self.process2 = nn.Sequential( | |
nn.Conv2d(nc, nc, 1, 1, 0), | |
nn.LeakyReLU(0.1, inplace=True), | |
nn.Conv2d(nc, nc, 1, 1, 0)) | |
def forward(self, x): | |
_, _, H, W = x.shape | |
x_freq = torch.fft.rfft2(self.fpre(x), norm='backward') | |
mag = torch.abs(x_freq) | |
pha = torch.angle(x_freq) | |
mag = self.process1(mag) | |
pha = self.process2(pha) | |
real = mag * torch.cos(pha) | |
imag = mag * torch.sin(pha) | |
x_out = torch.complex(real, imag) | |
x_out = torch.fft.irfft2(x_out, s=(H, W), norm='backward') | |
return x_out+x | |
# class FPA(nn.Module): | |
# def __init__(self,nc): | |
# super(FPA, self).__init__() | |
# self.process_mag = nn.Sequential( | |
# nn.Conv2d(nc, nc, 1, 1, 0), | |
# nn.LeakyReLU(0.1, inplace=True), | |
# nn.Conv2d(nc, nc, 1, 1, 0), | |
# nn.LeakyReLU(0.1, inplace=True), | |
# nn.Conv2d(nc, nc, 1, 1, 0)) | |
# self.process_pha = nn.Sequential( | |
# nn.Conv2d(nc, nc, 1, 1, 0), | |
# nn.LeakyReLU(0.1, inplace=True), | |
# nn.Conv2d(nc, nc, 1, 1, 0), | |
# nn.LeakyReLU(0.1, inplace=True), | |
# nn.Conv2d(nc, nc, 1, 1, 0)) | |
# def forward(self, input): | |
# _, _, H, W = input.shape | |
# x_freq = torch.fft.rfft2(input, norm='backward') | |
# mag = torch.abs(x_freq) | |
# pha = torch.angle(x_freq) | |
# mag = mag + self.process_mag(mag) | |
# pha = pha + self.process_pha(pha) | |
# real = mag * torch.cos(pha) | |
# imag = mag * torch.sin(pha) | |
# x_out = torch.complex(real, imag) | |
# x_out = torch.fft.irfft2(x_out, s=(H, W), norm='backward') | |
# return x_out | |
# class FBlock(nn.Module): | |
# def __init__(self, c, DW_Expand=2, FFN_Expand=2, dilations = [1], extra_depth_wise = False): | |
# super(FBlock, self).__init__() | |
# self.branches = nn.ModuleList() | |
# for dilation in dilations: | |
# self.branches.append(Branch_v2(c, DW_Expand, dilation = dilation, extra_depth_wise=extra_depth_wise)) | |
# assert len(dilations) == len(self.branches) | |
# self.dw_channel = DW_Expand * c | |
# self.sca = nn.Sequential( | |
# nn.AdaptiveAvgPool2d(1), | |
# nn.Conv2d(in_channels=self.dw_channel // 2, out_channels=self.dw_channel // 2, kernel_size=1, padding=0, stride=1, | |
# groups=1, bias=True, dilation = 1), | |
# ) | |
# self.sg1 = SimpleGate() | |
# self.conv3 = nn.Conv2d(in_channels=self.dw_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True, dilation = 1) | |
# self.norm1 = LayerNorm2d(c) | |
# self.norm2 = LayerNorm2d(c) | |
# ffn_channel = FFN_Expand * c | |
# self.conv_fpr_intro = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True, dilation = 1) | |
# self.fpa = FPA(nc = ffn_channel) | |
# self.conv_fpr_out = nn.Conv2d(in_channels=ffn_channel, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True, dilation = 1) | |
# self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) | |
# self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) | |
def forward(self, inp): | |
y = inp | |
x = self.norm1(inp) | |
z=0 | |
for branch in self.branches: | |
z += branch(x) | |
z = self.sg1(z) | |
x = self.sca(z) * z | |
x = self.conv3(x) | |
y = inp + self.beta * x | |
#Frequency pixel residue | |
x = self.conv_fpr_intro(self.norm2(y)) # size [B, C, H, W] | |
x = self.fpa(x) # size [B, C, H, W] | |
x = self.conv_fpr_out(x) | |
return y + x * self.gamma | |
if __name__ == '__main__': | |
img_channel = 3 | |
width = 32 | |
enc_blks = [1, 2, 3] | |
middle_blk_num = 3 | |
dec_blks = [3, 1, 1] | |
dilations = [1, 4, 9] | |
extra_depth_wise = False | |
# net = NAFNet(img_channel=img_channel, width=width, middle_blk_num=middle_blk_num, | |
# enc_blk_nums=enc_blks, dec_blk_nums=dec_blks) | |
net = EBlock_v2(c = img_channel, | |
dilations = dilations, | |
extra_depth_wise=extra_depth_wise) | |
inp_shape = (3, 256, 256) | |
from ptflops import get_model_complexity_info | |
macs, params = get_model_complexity_info(net, inp_shape, verbose=False, print_per_layer_stat=True) | |
print(macs, params) |