Spaces:
Sleeping
Sleeping
import gradio as gr | |
from PIL import Image | |
import torch | |
import torchvision.transforms as transforms | |
import numpy as np | |
import torch.nn.functional as F | |
from archs.model import UNet | |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') | |
#define some auxiliary functions | |
pil_to_tensor = transforms.ToTensor() | |
# define some parameters based on the run we want to make | |
model = UNet() | |
checkpoints = torch.load('./models/chk_6000.pt', map_location=device) | |
model.load_state_dict(checkpoints['model_state_dict']) | |
model = model.to(device) | |
model.eval() | |
def load_img (filename): | |
img = Image.open(filename).convert("RGB") | |
img_tensor = pil_to_tensor(img) | |
return img_tensor | |
def check_image_size(x): | |
_, _, h, w = x.size() | |
mod_pad_h = (32 - h % 32) % 32 | |
mod_pad_w = (32 - w % 32) % 32 | |
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), value = 0) | |
return x | |
def process_img(image): | |
img = np.array(image) | |
img = img / 255. | |
img = img.astype(np.float32) | |
y = torch.tensor(img).permute(2,0,1).unsqueeze(0).to(device) | |
resize = transforms.Resize((720, 1280)) | |
y = resize(y) | |
with torch.no_grad(): | |
x_hat = model(y) | |
restored_img = x_hat.squeeze().permute(1,2,0).clamp_(0, 1).cpu().detach().numpy() | |
restored_img = np.clip(restored_img, 0. , 1.) | |
restored_img = (restored_img * 255.0).round().astype(np.uint8) # float32 to uint8 | |
return Image.fromarray(restored_img) #(image, Image.fromarray(restored_img)) | |
title = "Efficient Low-Light Enhancement ✏️🖼️ 🤗" | |
description = ''' ## [Inpainting for Autonomous Driving](https://github.com/cidautai) | |
[Javier Abad Hernández](https://github.com/javierabad01) | |
Fundación Cidaut | |
“Inpainting is a technique used to restore or fill in missing parts of an image. Specifically, it works well for images where a synthetic object has been intentionally added (such as a placeholder or occlusion). In the context of datasets like BDD100K, inpainting can effectively remove these synthetic objects, resulting in a cleaner and more natural appearance.” | |
> **Disclaimer:** please remember this is not a product, thus, you will notice some limitations. | |
**This demo expects an image with some degradations.** | |
Due to the GPU memory limitations, the app might crash if you feed a high-resolution image (2K, 4K). | |
<br> | |
''' | |
examples = [['examples/inputs/1.jpg'], | |
['examples/inputs/2.jpg'], | |
['examples/inputs/3.jpg'], | |
["examples/inputs/4.jpg"], | |
["examples/inputs/5.jpg"]] | |
css = """ | |
.image-frame img, .image-container img { | |
width: auto; | |
height: auto; | |
max-width: none; | |
} | |
""" | |
demo = gr.Interface( | |
fn = process_img, | |
inputs = [ | |
gr.Image(type = 'pil', label = 'input') | |
], | |
outputs = [gr.Image(type='pil', label = 'output')], | |
title = title, | |
description = description, | |
examples = examples, | |
css = css | |
) | |
if __name__ == '__main__': | |
demo.launch() |