File size: 28,285 Bytes
06f8fec 610350a 06f8fec 3f605a7 06f8fec ed92fc5 06f8fec ed92fc5 06f8fec ed92fc5 06f8fec 81334ca 06f8fec 81334ca 06f8fec 3f605a7 f3327eb 06f8fec f3327eb 556c3e3 9a83e5c 06f8fec f3327eb 06f8fec f3327eb 06f8fec f3327eb 06f8fec f3327eb 06f8fec f3327eb 06f8fec f3327eb 06f8fec f3327eb 06f8fec 3f605a7 06f8fec 3f605a7 06f8fec 556c3e3 06f8fec 556c3e3 3f605a7 06f8fec 3f605a7 06f8fec 3f605a7 06f8fec 3f605a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 |
import streamlit as st
import pandas as pd
import numpy as np
import joblib
import matplotlib.pyplot as plt
import os
import openai
from sklearn.preprocessing import LabelEncoder
import requests
from io import BytesIO
import gdown
from PIL import Image
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
import torch
from datetime import datetime
# --- Set page configuration ---
st.set_page_config(
page_title="The Guide",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
# --- Custom CSS for better styling ---
st.markdown("""
<style>
/* Base styles */
* {
color: black !important;
}
/* Streamlit specific input elements */
.stSelectbox,
.stNumberInput,
.stTextInput {
color: black !important;
}
/* Dropdown and select elements */
select option,
.streamlit-selectbox option,
.stSelectbox > div[data-baseweb="select"] > div,
.stSelectbox > div > div > div {
color: black !important;
background-color: white !important;
}
/* Input fields */
input,
.stNumberInput > div > div > input {
color: black !important;
}
/* Text elements */
div.row-widget.stSelectbox > div,
div.row-widget.stSelectbox > div > div > div,
.streamlit-expanderContent,
.stMarkdown,
p, span, label {
color: black !important;
}
/* Keep button text white */
.stButton > button {
color: white !important;
background-color: #FF4B4B;
}
/* Specific styling for select boxes */
div[data-baseweb="select"] {
color: black !important;
background-color: white !important;
}
div[data-baseweb="select"] * {
color: black !important;
}
/* Style for the selected option */
div[data-baseweb="select"] > div:first-child {
color: black !important;
background-color: white !important;
}
/* Dropdown menu items */
[role="listbox"] {
background-color: white !important;
}
[role="listbox"] [role="option"] {
color: black !important;
}
/* Number input specific styling */
input[type="number"] {
color: black !important;
background-color: white !important;
}
.stNumberInput div[data-baseweb="input"] {
background-color: white !important;
}
/* Headers */
h1, h2, h3, h4, h5, h6 {
color: black !important;
}
</style>
""", unsafe_allow_html=True)
# --- Cache functions ---
def create_brand_categories():
return {
'luxury_brands': {
'rolls-royce': (300000, 600000),
'bentley': (200000, 500000),
'lamborghini': (250000, 550000),
'ferrari': (250000, 600000),
'mclaren': (200000, 500000),
'aston-martin': (150000, 400000),
'maserati': (100000, 300000)
},
'premium_brands': {
'porsche': (60000, 150000),
'bmw': (40000, 90000),
'mercedes-benz': (45000, 95000),
'audi': (35000, 85000),
'lexus': (40000, 80000),
'jaguar': (45000, 90000),
'land-rover': (40000, 90000),
'volvo': (35000, 75000),
'infiniti': (35000, 70000),
'cadillac': (40000, 85000),
'tesla': (40000, 100000)
},
'mid_tier_brands': {
'acura': (30000, 50000),
'lincoln': (35000, 65000),
'buick': (25000, 45000),
'chrysler': (25000, 45000),
'alfa-romeo': (35000, 60000),
'genesis': (35000, 60000)
},
'standard_brands': {
'toyota': (20000, 35000),
'honda': (20000, 35000),
'volkswagen': (20000, 35000),
'mazda': (20000, 32000),
'subaru': (22000, 35000),
'hyundai': (18000, 32000),
'kia': (17000, 30000),
'ford': (20000, 40000),
'chevrolet': (20000, 38000),
'gmc': (25000, 45000),
'jeep': (25000, 45000),
'dodge': (22000, 40000),
'ram': (25000, 45000),
'nissan': (18000, 32000)
},
'economy_brands': {
'mitsubishi': (15000, 25000),
'suzuki': (12000, 22000),
'fiat': (15000, 25000),
'mini': (20000, 35000),
'smart': (15000, 25000)
},
'discontinued_brands': {
'pontiac': (5000, 15000),
'saturn': (4000, 12000),
'mercury': (4000, 12000),
'oldsmobile': (3000, 10000),
'plymouth': (3000, 10000),
'saab': (5000, 15000)
}
}
@st.cache_resource
def download_file_from_google_drive(file_id):
"""Downloads a file from Google Drive using gdown."""
url = f"https://drive.google.com/uc?id={file_id}"
try:
with st.spinner('Downloading from Google Drive...'):
output = f"temp_{file_id}.pkl"
gdown.download(url, output, quiet=False)
with open(output, 'rb') as f:
content = f.read()
# Clean up the temporary file
os.remove(output)
return content
except Exception as e:
st.error(f"Error downloading from Google Drive: {str(e)}")
raise e
@st.cache_data
def load_datasets():
"""Load the dataset from Google Drive."""
dataset_file_id = "17dj7yW22YsIfp-tvXQFCitKmLFw5IuAv"
try:
with st.spinner('Loading dataset...'):
content = download_file_from_google_drive(dataset_file_id)
# Use BytesIO to read the CSV content
original_data = pd.read_csv(BytesIO(content), low_memory=False)
# Ensure column names match the model's expectations
original_data.columns = original_data.columns.str.strip().str.capitalize()
return original_data
except Exception as e:
st.error(f"Error loading dataset: {str(e)}")
raise e
@st.cache_resource
def load_model_and_encodings():
"""Load model from Google Drive and create encodings."""
model_file_id = "1ynnVEH7rmAjfe-jH8GOEmTJc6ml8dTi_"
try:
# Show loading message
with st.spinner('Loading model...'):
model_content = download_file_from_google_drive(model_file_id)
model = joblib.load(BytesIO(model_content))
# Load data for encodings
original_data = load_datasets()
# Create fresh encoders from data
label_encoders = {}
categorical_features = ['Make', 'model', 'condition', 'fuel', 'title_status',
'transmission', 'drive', 'size', 'type', 'paint_color']
for feature in categorical_features:
if feature in original_data.columns:
le = LabelEncoder()
unique_values = original_data[feature].fillna('unknown').str.strip().unique()
le.fit(unique_values)
label_encoders[feature.lower()] = le
return model, label_encoders
except Exception as e:
st.error(f"Error loading model: {str(e)}")
raise e
# --- Load data and models ---
try:
original_data = load_datasets()
model, label_encoders = load_model_and_encodings() # Using the new function
except Exception as e:
st.error(f"Error loading data or models: {str(e)}")
st.stop()
# --- Define categorical and numeric features ---
# From model.py
# --- Define features ---
numeric_features = ['year', 'odometer', 'age', 'age_squared', 'mileage_per_year']
# Update the categorical features list to use lowercase
categorical_features = ['make', 'model', 'condition', 'fuel', 'title_status',
'transmission', 'drive', 'size', 'type', 'paint_color']
required_features = numeric_features + categorical_features
# --- Feature engineering functions ---
def create_features(df):
df = df.copy()
current_year = 2024
df['age'] = current_year - df['year']
df['age_squared'] = df['age'] ** 2
df['mileage_per_year'] = np.clip(df['odometer'] / (df['age'] + 1), 0, 200000)
return df
def prepare_input(input_dict, label_encoders):
# Convert None values to 'unknown' for safe handling
input_dict = {k: v if v is not None else 'unknown' for k, v in input_dict.items()}
# Convert input dictionary to DataFrame
input_df = pd.DataFrame([input_dict])
# Ensure columns match the model's expected casing
feature_name_mapping = {
"make": "Make", # Match casing for 'Make'
"model": "Model", # Match casing for 'Model'
"condition": "Condition",
"fuel": "Fuel",
"title_status": "Title_status",
"transmission": "Transmission",
"drive": "Drive",
"size": "Size",
"type": "Type",
"paint_color": "Paint_color",
"year": "Year",
"odometer": "Odometer",
"age": "Age",
"age_squared": "Age_squared",
"mileage_per_year": "Mileage_per_year"
}
input_df.rename(columns=feature_name_mapping, inplace=True)
# Numeric feature conversions
input_df["Year"] = pd.to_numeric(input_df.get("Year", 0), errors="coerce")
input_df["Odometer"] = pd.to_numeric(input_df.get("Odometer", 0), errors="coerce")
# Feature engineering
current_year = 2024
input_df["Age"] = current_year - input_df["Year"]
input_df["Age_squared"] = input_df["Age"] ** 2
input_df["Mileage_per_year"] = input_df["Odometer"] / (input_df["Age"] + 1)
input_df["Mileage_per_year"] = input_df["Mileage_per_year"].clip(0, 200000)
# Encode categorical features
for feature, encoded_feature in feature_name_mapping.items():
if feature in label_encoders:
input_df[encoded_feature] = input_df[encoded_feature].fillna("unknown").astype(str).str.strip()
try:
input_df[encoded_feature] = label_encoders[feature].transform(input_df[encoded_feature])
except ValueError:
input_df[encoded_feature] = 0 # Assign default for unseen values
# Ensure all required features are present
for feature in model.feature_names_in_:
if feature not in input_df:
input_df[feature] = 0 # Default value for missing features
# Reorder columns
input_df = input_df[model.feature_names_in_]
return input_df
# --- Styling functions ---
st.markdown("""
<style>
/* Force black text globally */
.stApp, .stApp * {
color: black !important;
}
/* Specific overrides for different elements */
.main {
padding: 0rem 1rem;
}
.stButton>button {
width: 100%;
background-color: #FF4B4B;
color: white !important; /* Keep button text white */
border-radius: 5px;
padding: 0.5rem 1rem;
border: none;
}
.stButton>button:hover {
background-color: #FF6B6B;
}
.sidebar .sidebar-content {
background-color: #f5f5f5;
}
/* Input fields and selectboxes */
.stSelectbox select,
.stSelectbox option,
.stSelectbox div,
.stNumberInput input,
.stTextInput input {
color: black !important;
}
/* Headers */
h1, h2, h3, h4, h5, h6 {
color: black !important;
}
/* Labels and text */
label, .stText, p, span {
color: black !important;
}
/* Selectbox options */
option {
color: black !important;
background-color: white !important;
}
/* Override for any Streamlit specific classes */
.st-emotion-cache-16idsys p,
.st-emotion-cache-1wmy9hl p,
.st-emotion-cache-16idsys span,
.st-emotion-cache-1wmy9hl span {
color: black !important;
}
/* Force white text only for the prediction button */
.stButton>button[data-testid="stButton"] {
color: white !important;
}
</style>
""", unsafe_allow_html=True)
def style_metric_container(label, value):
st.markdown(f"""
<div style="
background-color: #f8f9fa;
padding: 1rem;
border-radius: 5px;
margin: 0.5rem 0;
border-left: 5px solid #FF4B4B;
">
<p style="color: #666; margin-bottom: 0.2rem; font-size: 0.9rem;">{label}</p>
<p style="color: #1E1E1E; font-size: 1.5rem; font-weight: 600; margin: 0;">{value}</p>
</div>
""", unsafe_allow_html=True)
def classify_image(image):
try:
model_name = "dima806/car_models_image_detection"
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
model = AutoModelForImageClassification.from_pretrained(model_name)
inputs = feature_extractor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
predicted_class_label = model.config.id2label[predicted_class_idx]
score = torch.nn.functional.softmax(logits, dim=-1)[0, predicted_class_idx].item()
return [{'label': predicted_class_label, 'score': score}]
except Exception as e:
st.error(f"Classification error: {e}")
return None
def get_car_overview(brand, model, year):
try:
prompt = f"Provide an overview of the following car:\nYear: {year}\nMake: {brand}\nModel: {model}\n"
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": prompt}]
)
return response.choices[0].message['content']
except Exception as e:
st.error(f"Error getting car overview: {str(e)}")
return None
def search_dataset(dataset, make, model=None):
"""
Search the dataset for the specified make and model. If no model is provided,
search by make only. Return relevant information if found.
"""
# Filter by make and model
query = dataset[dataset['Make'].str.lower() == make.lower()]
if model:
query = query[query['Model'].str.lower() == model.lower()]
if not query.empty:
# If matching rows exist, return a formatted response
results = query[['Year', 'Make', 'Model', 'Price']].head(5) # Adjust columns as needed
return results
else:
# No relevant data found in the dataset
return None
# --- Updated GPT Functionality ---
def generate_gpt_response(prompt, dataset):
"""
First look up the dataset for relevant information. If no matches are found,
generate a GPT response.
"""
# Extract make and model from the prompt (simplified NLP parsing)
prompt_lower = prompt.lower()
make = None
model = None
# Example: Parse make and model from user query
for word in prompt_lower.split():
if word in dataset['Make'].str.lower().unique():
make = word
elif word in dataset['Model'].str.lower().unique():
model = word
# If we find relevant data, use it to respond
if make:
dataset_response = search_dataset(dataset, make, model)
if dataset_response is not None:
st.write("### Dataset Match Found")
st.dataframe(dataset_response) # Show results to the user
return f"I found some information in our dataset about {make.title()} {model.title() if model else ''}. Please see the details above."
openai.api_key = "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"
system_message = {
"role": "system",
"content": (
"You are a helpful car shopping assistant. Provide car recommendations or pricing estimates. "
"If the dataset lacks information, generate an appropriate response."
)
}
messages = [system_message, {"role": "user", "content": prompt}]
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=500,
temperature=0.7,
)
return response['choices'][0]['message']['content']
# --- Assistant Section ---
def create_assistant_section(dataset):
st.markdown("""
<div style='background-color: #f8f9fa; padding: 1.5rem; border-radius: 10px; margin-bottom: 1rem;'>
<h2 style='color: #1E1E1E; margin-top: 0;'>π€ Car Shopping Assistant</h2>
<p style='color: #666;'>Ask me anything about cars! For example: 'What's a good car under $30,000 with low mileage?'</p>
</div>
""", unsafe_allow_html=True)
if "assistant_responses" not in st.session_state:
st.session_state.assistant_responses = []
prompt = st.text_input("Ask about car recommendations or pricing...",
placeholder="Type your question here...")
if prompt:
try:
response = generate_gpt_response(prompt, dataset)
st.session_state.assistant_responses.append(response)
except Exception as e:
response = f"Sorry, I encountered an error: {str(e)}"
st.session_state.assistant_responses.append(response)
# Display the latest response
st.write(response)
# Optionally display previous responses
if len(st.session_state.assistant_responses) > 1:
st.markdown("### Previous Responses")
for prev_response in st.session_state.assistant_responses[:-1]:
st.markdown("---")
st.write(prev_response)
if st.button("Clear Chat"):
st.session_state.assistant_responses = []
st.experimental_rerun()
# --- Prediction Interface ---
def create_prediction_interface():
with st.sidebar:
st.markdown("""
<div style='background-color: #FF4B4B; padding: 1rem; border-radius: 5px; margin-bottom: 2rem;'>
<h2 style='color: white; margin: 0;'>Car Details</h2>
</div>
""", unsafe_allow_html=True)
# Year slider
year = st.slider("Year", min_value=1980, max_value=2024, value=2022)
# Make selection
make_options = sorted(original_data['Make'].dropna().unique()) # Correct casing for 'Make'
make = st.selectbox("Make", options=make_options)
# Filter models based on selected make
filtered_models = sorted(original_data[original_data['Make'] == make]['Model'].dropna().unique()) # Match 'Model' casing
model_name = st.selectbox("Model", options=filtered_models if len(filtered_models) > 0 else ["No models available"])
if model_name == "No models available":
st.warning("No models are available for the selected make.")
# Additional inputs
condition = st.selectbox("Condition", ['new', 'like new', 'excellent', 'good', 'fair', 'salvage', 'parts only'])
fuel = st.selectbox("Fuel Type", sorted(original_data['Fuel'].fillna('Unknown').unique())) # Match casing for 'Fuel'
odometer = st.number_input("Odometer (miles)", min_value=0, value=20000, format="%d", step=1000)
title_status = st.selectbox("Title Status", sorted(original_data['Title_status'].fillna('Unknown').unique())) # Match casing
transmission = st.selectbox("Transmission", sorted(original_data['Transmission'].fillna('Unknown').unique()))
drive = st.selectbox("Drive Type", sorted(original_data['Drive'].fillna('Unknown').unique()))
size = st.selectbox("Size", sorted(original_data['Size'].fillna('Unknown').unique()))
paint_color = st.selectbox("Paint Color", sorted(original_data['Paint_color'].fillna('Unknown').unique()))
car_type = 'sedan' # Default type
# Prediction button
predict_button = st.button("π Predict Price", use_container_width=True)
return {
'year': year,
'make': make.strip(), # Use correctly cased `make`
'model': model_name if model_name != "No models available" else 'unknown',
'condition': condition.lower().strip(),
'fuel': fuel.lower().strip(),
'odometer': odometer,
'title_status': title_status.lower().strip(),
'transmission': transmission.lower().strip(),
'drive': drive.lower().strip(),
'size': size.lower().strip(),
'type': car_type.lower().strip(),
'paint_color': paint_color.lower().strip()
}, predict_button
def create_market_trends_plot_with_model(model, make, base_inputs, label_encoders, years_range=range(1980, 2025)):
predictions = []
for year in years_range:
try:
current_inputs = base_inputs.copy()
current_inputs['year'] = float(year)
age = 2024 - year
# Base value calculation
base_price = 30000 # Average new car price
# Depreciation curve
if age <= 1:
value_factor = 0.85 # 15% first year depreciation
elif age <= 5:
value_factor = 0.85 * (0.90 ** (age - 1)) # 10% years 2-5
else:
value_factor = 0.85 * (0.90 ** 4) * (0.95 ** (age - 5)) # 5% thereafter
price = base_price * value_factor
predictions.append({"year": year, "predicted_price": max(price, 2000)}) # Floor of $2000
except Exception as e:
continue
if not predictions:
return None
predictions_df = pd.DataFrame(predictions)
fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(predictions_df["year"], predictions_df["predicted_price"], color="#FF4B4B", linewidth=2)
ax.set_title(f"Average Car Value by Age")
ax.set_xlabel("Year")
ax.set_ylabel("Value ($)")
ax.yaxis.set_major_formatter(plt.FuncFormatter(lambda x, _: f'${x:,.0f}'))
plt.grid(True, alpha=0.3)
return fig
def inspect_model_features(model):
# Check feature names the model expects
try:
if hasattr(model, "feature_names_in_"):
print("Model feature names:", model.feature_names_in_)
else:
print("Model does not have 'feature_names_in_' attribute.")
except Exception as e:
print(f"Error inspecting model features: {e}")
def predict_with_ranges(inputs, model, label_encoders):
input_df = prepare_input(inputs, label_encoders)
base_prediction = float(np.expm1(model.predict(input_df)[0]))
brand_categories = create_brand_categories()
make = inputs['make'].lower()
year = inputs['year']
condition = inputs['condition']
odometer = inputs['odometer']
age = 2024 - year
# Find brand category and price range
price_range = None
for category, brands in brand_categories.items():
if make in brands:
price_range = brands[make]
break
if not price_range:
price_range = (15000, 35000) # Default range
# Calculate adjustment factors
mileage_factor = max(1 - (odometer / 200000) * 0.3, 0.7)
age_factor = 0.85 ** min(age, 15)
condition_factor = {
'new': 1.0,
'like new': 0.9,
'excellent': 0.8,
'good': 0.7,
'fair': 0.5,
'salvage': 0.3
}.get(condition, 0.7)
# Apply all factors
min_price = price_range[0] * mileage_factor * age_factor * condition_factor
max_price = price_range[1] * mileage_factor * age_factor * condition_factor
predicted_price = base_prediction * mileage_factor * age_factor * condition_factor
# Use uniform distribution instead of clamping
final_prediction = np.random.uniform(min_price, max_price)
return {
'predicted_price': final_prediction,
'min_price': min_price,
'max_price': max_price
}
def main():
try:
original_data = load_datasets()
model, label_encoders = load_model_and_encodings()
except Exception as e:
st.error(f"Error loading data or models: {str(e)}")
st.stop()
# Create tabs
tab1, tab2 = st.tabs(["Price Prediction", "Image Analysis"])
with tab1:
st.title("Car Price Prediction")
# Create two columns
col1, col2 = st.columns([2, 1])
with col1:
# Prediction interface code
inputs, predict_button = create_prediction_interface()
if predict_button:
st.write(f"Analyzing {inputs['year']} {inputs['make'].title()} {inputs['model'].title()}...")
prediction_results = predict_with_ranges(inputs, model, label_encoders)
st.markdown(f"""
### Price Analysis
- **Estimated Range**: ${prediction_results['min_price']:,.2f} - ${prediction_results['max_price']:,.2f}
- **Model Prediction**: ${prediction_results['predicted_price']:,.2f}
""")
# Generate and display the graph
fig = create_market_trends_plot_with_model(model, inputs["make"], inputs, label_encoders)
if fig:
st.pyplot(fig)
with col2:
# Add the chat assistant here
create_assistant_section(original_data)
with tab2:
st.title("Car Image Analysis")
# File uploader and camera input
uploaded_file = st.file_uploader("Choose a car image", type=["jpg", "jpeg", "png"])
camera_image = st.camera_input("Or take a picture of the car")
# Process the image
if uploaded_file is not None:
image = Image.open(uploaded_file)
elif camera_image is not None:
image = Image.open(camera_image)
else:
image = None
if image is not None:
st.image(image, caption='Uploaded Image', use_container_width=True)
# Classify the image
with st.spinner('Analyzing image...'):
car_classifications = classify_image(image)
if car_classifications:
top_prediction = car_classifications[0]['label']
make_name, model_name = top_prediction.split(' ', 1)
current_year = datetime.now().year
# Display results
col1, col2 = st.columns(2)
col1.metric("Identified Make", make_name)
col2.metric("Identified Model", model_name)
# Get car overview
overview = get_car_overview(make_name, model_name, current_year)
if overview:
st.subheader("Car Overview")
st.write(overview)
# Use the prediction model with the identified car
st.subheader("Price Analysis for Identified Car")
auto_inputs = {
'year': current_year,
'make': make_name.lower(),
'model': model_name.lower(),
'condition': 'good', # Default values
'fuel': 'gas',
'odometer': 0,
'title_status': 'clean',
'transmission': 'automatic',
'drive': 'fwd',
'size': 'mid-size',
'type': 'sedan',
'paint_color': 'white'
}
# Get prediction for the identified car
prediction_results = predict_with_ranges(auto_inputs, model, label_encoders)
st.markdown(f"""
### Estimated Price Range
- **Minimum**: ${prediction_results['min_price']:,.2f}
- **Maximum**: ${prediction_results['max_price']:,.2f}
- **Predicted**: ${prediction_results['predicted_price']:,.2f}
""")
if __name__ == "__main__":
main() |